City of San Bernardino Municipal Water
SBMWD
Local Hazard Mitigation Plan (LHMP)

San Bernardino, California

City of San Bernardino Municipal Water (SBMWD)
Water Board

Adoption Date: May 14, 2019
Approved by CalOES: March 30, 2019
Revised: 3-21-19
Approved by FEMA: April 3, 2019
Table of Contents

Section 1 Introduction

1.1 Purpose of the Plan ... 5
1.2 Authority ... 6
1.3 Community Profile ... 6
 1.3.1 Physical Setting ... 7
 1.3.2 History .. 8
 1.3.3 Demographics ... 9
 1.3.4 Existing Land Use .. 9
 1.3.5 Development Trends ... 9

Section 2 Plan Adoption

2.1 Adoption by Local Governing Body ... 9
2.2 Promulgation Authority .. 10
2.3 Primary Point of Contact ... 11

Section 3 Planning Process

3.1 Preparing for the Plan ... 12
3.2 Planning Team .. 15
3.3 Coordination with Other Jurisdictions, Agencies, and Organizations .. 18
3.4 Public Involvement/Outreach .. 18
3.5 Assess the Hazards .. 18
3.6 Set Mitigation Goals .. 19
3.7 Review and Propose Mitigation Measures 19
3.8 Draft the Hazard Mitigation Plan .. 19
3.9 Adoption of the Plan .. 20

Section 4 Risk Assessment

4.1 Hazard Identification .. 20
 4.1.1 Hazard Screening Criteria ... 20
 4.1.2 Hazard Assessment Matrix .. 23
 4.1.3 Hazard Prioritization ... 24
4.2 Hazard Profiles ... 25
 4.2.1 Earthquake ... 26
 4.2.2 Flooding ... 33
 4.2.3 Wildfire .. 39
 4.2.4 Terrorist Event ... 41
 4.2.5 Climate Change/Drought .. 41
 4.2.6 Windstorm ... 44
4.3 Inventory Assets ... 45
 4.3.1 Facilities Overview .. 45
 4.3.2 Critical Facilities List .. 47
4.4 Vulnerability Assessment ... 49
 4.4.1 Methodology ... 49
 4.4.2 Earthquake Vulnerability Analysis ... 49
 4.4.3 Flooding Vulnerability Analysis ... 49
 4.4.4 Wildfire Vulnerability Analysis .. 50
 4.4.5 Terrorist Event Vulnerability Analysis 50
 4.4.6 Climate Change/Drought Vulnerability Analysis 50
 4.4.7 Windstorm Vulnerability Analysis ... 52
 4.4.8 Potential Loss Estimate .. 52

Section 5 Community Capability Assessments

 5.1 Agencies and People .. 55
 5.2 Existing Plans .. 55
 5.3 Regulations, Codes, Policies, and Ordinances 53
 5.4 Mitigation Programs .. 56
 5.5 Fiscal Resources .. 56

Section 6 Mitigation Strategies

 6.1 Overview .. 58
 6.2 Mitigation Goals and Objectives .. 58
 6.2.1 Earthquake .. 59
 6.2.2 Flooding .. 59
 6.2.3 Wildfire ... 60
 6.2.4 Terrorist Event ... 60
 6.2.5 Climate Change/Drought ... 61
 6.2.6 Windstorm ... 62
 6.2.7 Mitigation at Critical Sites .. 63
 6.3 Mitigation Measures ... 65
 6.4 Implementation Strategy .. 65

Section 7 Plan Maintenance

 7.1 Monitoring, Evaluating and Updating the Plan 66
 7.2 Implementation through Existing Programs 66
 7.3 Continued Public Involvement .. 67
Tables

Table 1 Plans Reviewed by the Planning Team ... 13
Table 2 Financial Resources for Future Mitigation Projects 14
Table 3 San Bernardino Municipal Water Department wells with water levels 22
Table 4 Screening Assessment Matrix .. 23
Table 5 Historic Southern California Earthquakes .. 31
Table 6 Flooding History ... 35
Table 7 Drought History ... 43
Table 8 Critical Facilities .. 47
Table 9 Economic Impacts on Critical Facilities .. 53
Table 10 Mitigation Measures .. 63

Figures

Figure 1 Shake Map for 7.8 Earthquake Intensity for City of San Bernardino 27
Figure 2 Southern California (East) Shake Out Area, Probability of Shaking 28
Figure 2 A The Great ShakeOut Map ... 29
Figure 2 B Earthquake Fault Lines in San Bernardino Valley 30
Figure 3 Examples of Earthquake Damage to Water Facilities 32
Figure 4 FEMA 500-Year Flood Map Showing Service Area 34
Figure 5 Fire Hazard Severity Zone Map Showing San Bernardino MWD Outline 40
Figure 6 Current Drought Conditions in San Bernardino as of August 2018 42
Figure 7 City of San Bernardino Water SBMWD Map ... 46

Appendices

Appendix A - Internal/External Meeting Agendas, Minutes, and Sign-in Sheets
Appendix B - Water Board Meeting Minutes, Public Comment Period
Appendix C - Screen Shot of SBMWD Website LHMP
Appendix D - California Water Conservation Resolution
Appendix E - SBMWD Incorporation Documentation
Appendix F - Dam Inundation Report
Appendix G - Underground water level per well site depth in feet
Appendix H - Water depth at well sites
SECTION 1: INTRODUCTION

1.1 Purpose of the Plan

Emergencies and disasters can leave people injured or displaced, result in fatalities, cause significant damage to our communities, businesses, public infrastructure and our environment and cost tremendous amounts in terms of response and recovery dollars and economic loss. Hazard mitigation reduces the risk of personal damages, loss of life, and property damages caused by emergencies and disasters.

Repairs and reconstruction after disasters are often completed to simply restore infrastructure to pre-disaster conditions. Such efforts expedite a return to normalcy; however, merely replicating pre-disaster conditions results in a cycle of damage, reconstruction, and repeated damage. Hazard mitigation attempts to break this cycle by reducing hazard vulnerability.

While we cannot prevent disasters from happening, their effects can be reduced or minimized through preparedness and mitigation. For those hazards that cannot be fully mitigated, the community must be prepared to provide efficient and effective response and recovery to emergencies. This can be accomplished through a well-organized public education and awareness effort.

The purpose of this Local Hazard Mitigation Plan (LHMP) is to identify potential hazards to the City of San Bernardino Municipal Water Department (SBMWD) and formulate mitigation measures for future protection of the SBMWD critical infrastructure and the community’s safety with respect to the SBMWD facilities and services. Approval of this LHMP by the California Office of Emergency Services (CalOES) will also allow the SBMWD to become eligible to receive federal funding assistance under the Local Hazard Mitigation Grant Program or the Pre-Disaster Mitigation program.

As required by the Department of Homeland Security’s Federal Emergency Management Administration (FEMA), the LHMP must be updated, adopted, and approved every five (5) years. This LHMP is an updated plan. The first LHMP was approved by FEMA in 2005 and again in 2010. The current plan has expired. The 2010 plan was undertaken under a grant from San Bernardino County OES and was completed along with 33 water agencies in the County and rolled up under the San Bernardino Counties HMP. Therefor this is the first stand alone plan the Department has developed. The 2010 HMP was completed and approved.

In late 2018, the Department came under new leadership. There was a new General Manager (G.M.) appointed. The new G.M. was a member of the LHMP planning team. Mr. Miguel J. Guerrero, Professional Engineer (P.E.) is a believer in mitigation and this undated plan will be at the center of Hazard Mitigation and capital improvement plan in the Department.
1.2 Authority

Created as a municipal utility under Article 9 of the City of San Bernardino Charter, SBMWD was established on January 6, 1905. SBMWD is governed by a Water Board appointed by the Mayor and subject to confirmation by the City Council. The first Water Board was appointed in May 1905, and the initial water distribution system covered approximately one square mile and served a population of only about 6,000 people. Since then, the service area has experienced years of steady population growth and has expanded at a fast rate to provide service to most of the City of San Bernardino and portions of the unincorporated area of San Bernardino County. SBMWD also provides services to the City of Highland and Loma Linda.

The SBMWD’s service area receives its water supply from an underground aquifer called Bunker Hill Groundwater Basin, which is concentrated at the northeastern end of the city. The water contained in the Bunker Hill Groundwater Basin is replenished with rain and snowmelt that filters through the local San Bernardino Mountains. This local water supply ensures the customers of the San Bernardino Municipal Water Department receive high quality, inexpensive water as compared to other communities. SBMWD also receives water from the State of California Water Project. State project water does not feed directly into SBMWD water system and is only used to help replenish the Bunker Hill Basin. Many communities of Southern California must import their water supplies from remote locations via the Colorado River and Northern California pipelines and aqueducts. Many water supplies imported from distant locations can be impacted by certain man-made and natural contaminants as the water is transported to the customer. SBMWD also operates two wastewater treatment plants.

1.3 Community Profile

SBMWD has a service area of approximately 55 square miles and provides water service to customers within the City of San Bernardino, with a small percentage of out-of-city accounts. Given the high percentage of service to City parcels, the land use as defined by the City of San Bernardino’s General Plan is used as the primary basis for development in the SBMWD’s service area. In addition to the City’s General Plan, the SBMWD’s water system billing database (HTE) and information from the County’s General Plan are used to classify land uses for undeveloped and unincorporated areas that fall within the SBMWD’s service boundaries.

The City of San Bernardino currently has a population of approximately 215,000 people. Since 2001, water use within the SBMWD’s service area has ranged from a low of 41,844 acre-feet (AF) to as high as 55,135 AF. Typically, the annual fluctuations are found to be primarily in response to factors such as weather conditions, economy, or unemployment. Following the downturn in the California economy, water demands declined to approximately 41,844 AF in 2013, showing a downward trend since 2008.

SBMWD relies solely on water extracted from the underlying aquifer, the Bunker Hill Groundwater Basin to meet its demands. This water is distributed via SBMWD’s water distribution system consisting of pipelines, storage reservoirs, pumping stations, hydroelectric generating stations, manual and automatic control valves, fire hydrants, and water meters located throughout 23 individual pressure zones.
The SBMWD provides water service to approximately 44,000 active service connections within its 55 square-mile service area in the City of San Bernardino and surrounding areas. The SBMWD operates and maintains 38 storage tanks, 53 water wells, and nearly 750 miles of water pipelines. In addition, the SBMWD has recently taken ownership of the City of San Bernardino’s wastewater collection system. The SBMWD has owned and operated the wastewater treatment system for over 60 years but didn’t own or operate the wastewater collection system. The collection system was owned and operated by the City of San Bernardino, Public Works Department. As the city emerged from bankruptcy in 2017, the city turned over ownership, maintenance, and control of the collections system. The collection system had not been updated in many years. The SBMWD now operates 466 miles of wastewater pipelines and has 64,342 customer wastewater laterals within the city and county areas. The wastewater system treats on average 22 million gallons of wastewater daily.

1.3.1 Physical Setting

The City of San Bernardino lies at the base of the San Bernardino Mountains and is approximately-60 miles east of the City of Los Angeles. The city has three major freeways that run through it, and those freeways are: Interstate 10, Interstate 215, and Interstate 210. The city is also home to California State University, San Bernardino and San Bernardino International Airport.

The SBMWD’s service area is bounded on the north by the San Bernardino National Forest, on the east by the East Valley Water District and Redlands Municipal Utilities, on the south by the cities of Loma Linda and Colton, and on the west by the West Valley Water District, the City of Rialto, and the Muscoy Mutual Water Company. Elevations within the SBMWD’s service area range from approximately 1,000 feet above sea level at the southern boundary, to an elevation more than 2,300 feet above sea level at its northern-most boundary.

The geographical features include the San Bernardino National Forest, which is located to the north of the city’s boundaries. Cajon Pass is located at the northwest section of the city. The Arrowhead Springs are located within the city boundaries. City Creek, San Timoteo Creek, Twin Creek, and Warm Creek feed into the Santa Ana River, which encompasses most of the city’s southern border.

San Bernardino is unique from most Southern California cities because of the vast amounts of water found in the basin. Most of the city sits on the underground aquifer named the Bunker Hill Basin. The city’s downtown area was built on top of the Bunker Hill Basin. The downtown area still rests in that location. This accounts for the historical high-water table in the city. In past years the water table was so high, the city installed super wells to pump water from the basin into the Santa Ana River in attempts to lower the water table and stop the flooding of the United States Central Post Office basement as well as basements of other government offices and businesses located in the southwestern and western sides of the city. Pumping water out of the basin was also an attempt to lower the danger of liquefaction during earthquakes. These wells were turned off during the recent drought as the water table was well below levels that interfered with buildings.
1.3.2 History

City of San Bernardino Municipal Water Department (SBMWD)

The SBMWD and the Water Board were established on May 8, 1905, by the Mayor and Common Council of San Bernardino in accordance with the provisions specified in the City Charter. “The Water Board assembled for the first time on May 16, 1905, to meet the water supply needs of the community by providing trusted, quality service to our customers.” This service has grown through the years to include: water supply, water reclamation, geothermal heating supply, and administrative support for our growing community.

The first water distribution system of San Bernardino included water supply for approximately six thousand citizens within a one-square-mile service area. In contrast, the water supply distribution network now encompasses over 44,000 service connections including 750 miles of water mains. Although the number of connections has increased during the past one hundred years, the commitment to trusted, quality service remains intact.

City of San Bernardino

San Bernardino is a city located in the Riverside-San Bernardino metropolitan area, sometimes referred to as the Inland Empire. The City was founded in 1869, and the city serves as the county seat of San Bernardino County. As one of the anchor cities, San Bernardino spans 55 square miles on the floor of the San Bernardino Valley and has a population of 215,000 people as of the 2010 census. San Bernardino is the 19th largest city in California and the 100th largest city in the United States. The governments of Guatemala and Mexico have established their consulates in the downtown area of the City. California State University, San Bernardino is located in the northwest part of the city.

In August of 2012, San Bernardino became the largest city to file for protection under Chapter 9 of the U.S. Bankruptcy Code. On December 2, 2015, a terrorist attack left 14 people dead and 22 people seriously injured within the City.

County of San Bernardino

The County of San Bernardino has a population of more than 2,000,000 people as of the 2010 census, which is up from the reported 1,709,434 in the 2000 census. With an area of 20,105 square miles, San Bernardino County is the largest county in the United States by area. It is larger than nine States, including New Jersey, Massachusetts, and Maryland.

Located in the southeast section of California, thinly populated deserts and mountains cover most of this vast county. The bulk of the County’s population resides in two Census County Divisions, where approximately 1,400,000 people live as of the 2010 Census. San Bernardino County is bordered by the Colorado River on the east, Riverside County on the south, Los Angeles, Orange and Kern Counties on the west, and Inyo County on the north.
1.3.3 Demographics

The SBMWD serves approximately 44,000 potable water service connections and a population of approximately 215,000 customers. The SBMWD operates a wastewater system that includes 468 miles of wastewater collections and 64,342 wastewater lateral connections in the city and county area. The SBMWD treats on average 22 million gallons of wastewater a day. There are 50,283 households, out of 29,675 have children under the age of 18 living in them. 25,700 are opposite sex married couples. 13,518 are single female head of household with no wife present and 5,198 male head of household with no wife present. The average household size is 3.42 people. The average family size is 3.89.

1.3.4 Existing Land Use

The existing land use is housing, commercial, and light industry. The City of San Bernardino is responsible for designating land use. The City of San Bernardino and the County of San Bernardino regulate incorporated areas. The SBMWD does not have authority to regulate land use.

1.3.5 Development Trends

Development in the City of San Bernardino was reduced significantly during the housing industry crash of 2008. San Bernardino is seeing some new housing developments that started in 2015, 2017 and 2018. The area is expected to see an increase in the housing market, which will increase the number of water and wastewater service connections to the SBMWD’s water and wastewater systems. The biggest developing area’s in the City is housing. The majority of the new housing is being built in the Cities north west end, along the Cajon pass corridor. This development means there are more pipelines, sewer mains, reservoirs and wells needed to supply services to the area. This area is also located in a high fire area and is vulnerable to earthquakes and intense high winds during the Santa Ana events.

SECTION 2: PLAN ADOPTION

2.1 Adoption by Local Governing Body

The completed Local Hazard Mitigation Plan will be presented to the SBMWD’s governing body, the Water Board, for adoption after CalOES and FEMA has reviewed it, and all additions or deletions have been completed. The plan will then be forwarded to CalOES and then to FEMA for approval. If any sections of the plan are changed during the process, the document will be sent back to the SBMWD’s Water Board for final adoption by resolution.
2.2 Promulgation Authority

This Local Hazard Mitigation Plan was reviewed and approved by the Board of Water Commissioners of the City of San Bernardino Municipal Water Department’s Water Board:

Ms. Toni Callicott
Board President
Description of Involvement: President, City of San Bernardino Municipal Water Department (SBMWD), Water Board

Mr. David E. Mlynarski
Commissioner
Description of Involvement: Commissioner, City of San Bernardino Municipal Water Department (SBMWD), Water Board

Rikke V. Johnson
Commissioner
Description of Involvement: Commissioner, City of San Bernardino Municipal Water Department (SBMWD), Water Board

Thomas Brickley
Commissioner
Description of Involvement: Commissioner, City of San Bernardino Municipal Water Department (SBMWD), Water Board

Mr. Wayne Hendrix
Commissioner
Description of Involvement: Commissioner, City of San Bernardino Municipal Water Department (SBMWD), Water Board

Mr. Miguel J. Guerrero P.E.
General Manager
Description of Involvement: General Manager, City of San Bernardino Municipal Water Department (SBMWD)
2.3 Primary Point of Contact

The Point of Contact for information regarding this plan is:

BEFORE FEMA APPROVAL

Gary Sturdivan
Sturdivan Emergency Management Consulting, LLC
gsturdivan@me.com
909-658-5974

AFTER FEMA APPROVAL

Francisco Salazar
SBMWD Safety Manager
Francisco.Salazar@sbmwd.org
909-453-6025
SECTION 3: PLANNING PROCESS

This section documents the planning process used to review and compile information that leads to an effective LHMP. A comprehensive description of the planning process informs citizens and other readers how the plan was developed and provides a permanent record of how decisions were reached. These decisions can be understood, reconsidered, replicated, or modified in future plan updates. An integral part of the planning process is the documentation of how the public was engaged throughout the process.

This LHMP was completed with the coordination and involvement of the City of San Bernardino Municipal Water Department staff and representatives from other local agencies. These team members have a vested interest in the performance and resiliency of the SBMWD.

San Bernardino County Office of Emergency Services reviewed the plan and the contents of this plan for items that should be included from the San Bernardino County LHMP and items that should be included in the next County plan. San Bernardino County Fire Office of Emergency Services supplied the SBMWD with the hazard maps included in this document.

This section includes a list of the Planning Team Members, a summary of the meetings held, coordination efforts with the surrounding communities and groups, and public outreach efforts.

3.1 Preparing for the Plan

The Planning Team reviewed FEMA’s “Hazard Mitigation Plan Crosswalk” and information on past events that affected the SBMWD’s service area as provided by the San Bernardino County Office of Emergency Services.

The San Bernardino County Office of Emergency Services completed a FEMA Hazard Profile of the area. The Hazard Profile Maps provided by the County were used in the planning meetings to show flood areas, earthquakes, flash floods, and other disasters that have affected the area. Other written documentation of past events was also reviewed. The team discussed the different events that have occurred in the community; such as flash floods, earthquakes, windstorms, power outages, and freezing events. Members of the Planning Team are longtime residents of the community and have lived through many of these emergency events.

The planning process consisted of:

- Documenting past events
- Incorporating data
- Engaging the Planning Team
- Posting the meeting agendas, meeting minutes, and draft LHMP onto the SBMWD’s website and asking for public input and comments on the planning process
- Sharing information at the biweekly Board of Directors’ meetings
- Conducting public outreach
During the planning process the Planning Team utilized the following plans for information on the hazards that face the area and the mitigation goals of the City of San Bernardino and the County of San Bernardino.

- California HMP 2013
- San Bernardino County HMP
- City of San Bernardino Municipal Water SBMWD 2010 LHMP
- City of San Bernardino Municipal Water SBMWD Water Master Plan
- San Bernardino County Flood Control Plan
- USGS Golden Guardian Shake Out Exercise 2008
- FEMA Flood Insurance Study for San Bernardino County

Table 1

<table>
<thead>
<tr>
<th>Study Plan</th>
<th>Key Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of San Bernardino Municipal Water Department’s expired 2010 HMP</td>
<td>Hazards and Mitigation</td>
</tr>
<tr>
<td>California HMP 2013</td>
<td>Goals for the State of California</td>
</tr>
<tr>
<td>San Bernardino County HMP</td>
<td>Mitigation Measures and Goals, Hazards,</td>
</tr>
<tr>
<td>San Bernardino MWD’s 2010 LHMP</td>
<td>Hazard Identification and, Mitigation Measures</td>
</tr>
<tr>
<td>San Bernardino MWD Water Master Plan</td>
<td>Land Use, and Future Projects</td>
</tr>
<tr>
<td>Dam inundation report</td>
<td>Flooding Inundation from Dam Failure</td>
</tr>
<tr>
<td>USGS Golden Guardian 2008</td>
<td>Earthquakes, Effects and, Planning</td>
</tr>
<tr>
<td>FEMA Flood Insurance Study for San Bernardino County</td>
<td>Flood History</td>
</tr>
</tbody>
</table>
Table 2
Financial Resources for Future Mitigation Projects

<table>
<thead>
<tr>
<th>Local</th>
<th>Revenues</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgets and Financial Planning Documents</td>
<td>Water Sales, New Construction</td>
<td>Varies from Year to Year</td>
</tr>
<tr>
<td>FEMA Grants</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>State Revolving Funds</td>
<td>Sewer Project Funding</td>
<td>142 Million</td>
</tr>
<tr>
<td>Prop. 84 Funding</td>
<td>Water Pipeline Replacement, Phase One</td>
<td>7.2 Million</td>
</tr>
<tr>
<td>FEMA Mitigation Grants</td>
<td>SBMWD has not applied for FEMA Mitigation Grant funding in the past</td>
<td>As Funding and Approval are Obtained</td>
</tr>
<tr>
<td>Future Budget Funds Considerations</td>
<td>Water Sales</td>
<td>Varies as Funding is Available Each Year</td>
</tr>
</tbody>
</table>
3.2 Planning Team

The Planning Team compiled information and reviewed this LHMP under the authorization of the SBMWD’s Water Board. The Planning Team members included eleven (11) members from the SBMWD as follows:

Mr. Gary Sturdivan, LHMP Consultant
Description of Involvement: Planning Team Lead

Gary Sturdivan, as a consultant to the SBMWD, is the team leader for the LHMP. Mr. Sturdivan develops the agendas for each LHMP meeting, leads the discussions, compiles the meeting minutes and other information for public comment, and prepares draft text for the LHMP. Mr. Sturdivan provides informational updates to the SBMWD’s Water Board and incorporates the Board’s comments into the planning process and LHMP. Mr. Sturdivan has extensive knowledge of Mitigation Planning, Grant Funding, and Emergency Management. Mr. Sturdivan worked in the water industry for 25 years, with 8 years as the Commissioner of Safety/Regulatory Affairs/Emergency Management and Grants. Mr. Sturdivan is the owner and CEO of Sturdivan Emergency Management Consulting, LLC.

Mr. Miguel J. Guerrero, P.E. General Manager
Description of Involvement: Internal Planning Team Member

Miguel Guerrero is the General Manager of the Water Department. He is responsible for managing the activities of the Department and oversight of all Department divisions including, Administrative Services, Environmental and Regulatory Compliance, Finance, Water Utility, and Water Reclamation.

Mr. Steve Miller, Director of Water Utility
Description of Involvement: Internal Planning Team Member

Steve Miller is the Director of Water Utility. He oversees the operation, maintenance, water quality, and construction of facilities associated with the San Bernardino Municipal Water Department’s water distribution system, geothermal system, and water production/treatment facilities. Mr. Miller is responsible for maintaining compliance with the State of California issued Water Supply Permit.

Mr. Kevin T. Stewart, P.E. Director of Water Reclamation
Description of Involvement: Internal Planning Team Member

Kevin Stewart is the Director of Water Reclamation. He oversees the sections that make up the Water Reclamation Division: Administration; Operations; Maintenance; Electrical, Instrumentation & Supervisory Control and Data Acquisition (SCADA) system; RIX Facility;
and Sewer Collections. Mr. Stewart is responsible for maintaining compliance with the methods and procedures for the pretreatment protection, collection, treatment, and processing of wastewater to conform to federal, state, and local requirements.

Ms. Jennifer Shepardson, Director of Environmental and Regulatory Compliance
Description of Involvement: Internal Planning Team Member

Jennifer Shepardson is the Director of Environmental and Regulatory Compliance. She is responsible for ensuring the Department adheres to local, state, and federal regulations where applicable. Ms. Shepardson also oversees the Department’s Environmental Control, Water Quality, safety and risk management functions.

Mr. Frank Salazar, Safety Manager
Description of Involvement: Internal Planning Team Member

Frank Salazar is the Safety Manager in the Environmental and Regulatory Compliance section. He plans and coordinates the Accident Prevention Program; ensures a Comprehensive Safety Education and Loss Control Program is in place with all Department sections; conducts accident investigations involving Department employees, equipment, structures, and facilities on behalf of and against the Department. Mr. Salazar performs field audits of Department facilities, identifying safety hazards, security problems, and public liability.

Mr. Mike Garland, Water Utility Operations Superintendent
Description of Involvement: Internal Planning Team Member

Mike Garland is the Water Utility Operations Superintendent. He is responsible for managing and coordinating the operation of the Department’s production and treatment facilities. Mr. Garland plans, organizes, implements and controls installation, maintenance, operation and repair of water treatment equipment and infrastructure, including pumps, boosters, pressure regulating devices, hydro-generation, geothermal, and chlorinating equipment.

Ms. Julie Abinto, GIS Manager
Description of Involvement: Internal Planning Team Member

Julie Abinto manages all aspects of the GIS program, including Computer Aided Design (CAD) and other spatial data. She performs spatial analysis and solves GIS-related issues using Arc GIS or CAD. Ms. Abinto is the GIS Databases Administrator and designs and produces maps for presentations and reports.
Ms. Ashleigh Adame, Regulatory Analyst
Description of Involvement: Internal Planning Team Member

Ashleigh Adame is a Safety Regulatory Analyst in the Environmental and Regulatory Compliance section. She ensures all City of San Bernardino Municipal Water employees work in a safe and healthful workplace by enforcing Occupational Safety and Health Administration (OSHA) standards. Ms. Adame responds to Department incidents and accidents, including but not limited to: workplace injuries, damaged SBMWD property, vandalism, illegal dumping, burglaries and theft. She maintains the Loss Control Program and works closely with the San Bernardino Police Department to minimize the risk of losses.

Ms. Marissa Flores-Acosta, Environmental Supervisor
Description of Involvement: Internal Planning Team Member

Marissa Flores-Acosta is the Environmental Supervisor in the Environmental and Regulatory Compliance section at SBMWD. In this capacity, Ms. Flores-Acosta is responsible for Department adherence to local, state, and federal regulations under the Clean Water Act’s National Pollutant Discharge Elimination System (NPDES) program, South Coast Air Quality Management District (SCAQMD) and California Air Resources Control Board, as well as any other federal, state or local regulations.

Mr. Carl D. Jones, Regulatory Analyst
Description of Involvement: Internal Planning Team Member

Carl Jones is a Safety Regulatory Analyst in the Environmental and Regulatory Compliance section. He plans and coordinates hazardous materials management and disposal, trains Department employees on all aspects of Cal OSHA and Federal rules and regulations. Mr. Jones completes job site and facility safety evaluations and assists in accident response and investigations.
3.3 Coordination with Other Jurisdictions, Agencies, and Organizations

SBMWD staff invited the City of San Bernardino and San Bernardino County Office of Emergency Services, and residents of the community to participate in the LHMP planning process. The County of San Bernardino OES declined to participate on the Planning Team and was unable to attend meetings, but, County OES reviewed the plan as it was developed. The City was contacted by email and phone call by Mr. Salazar. The City gave the team a clean copy of the City’s LHMP for review. The County OES was contacted by Mr. Sturdivan, by a phone call to Miles Wagner.

The Planning Team participated in monthly meetings to coordinate efforts, provide input, and receive support for the LHMP. The support included receiving technical expertise, resource materials and tools. The support facilitated the LHMP process and provided sufficient information to be in compliance with FEMA requirements for the program. The tools, resource materials, and other project related information are maintained on a project portal on the SBMWD’s website (www.sbcity.org/water) to allow access of the information to all participants and the public.

3.4 Public Involvement/Outreach

SBMWD staff invited residents of the community to participate in the LHMP planning process. The 2018 board meeting agendas, meeting minutes, and sections of the LHMP were posted on the SBMWDs website as the LHMP was written. Requests for public review and comments were printed on the customer’s monthly bills, asking for customers to review the documents and direct comments or concerns to Mr. Sturdivan at gsturdivan@me.com or by calling Mr. Sturdivan at 909-658-5974. The public could also attend the Water Board meetings each month to voice comments or concerns. No public comments were received for the LHMP. Mr. Sturdivan received several calls from the public, with water or wastewater concerns. These calls were referred to the Department staff.

See Appendix B for the details of the public involvement process: meeting dates, purpose, agendas, sign-in sheets, minutes, and public comments.

3.5 Assess the Hazards

A critical component of the LHMP process is to assess the likely hazards that may impact the SBMWD’s facilities and operations. It is important to have a thorough understanding of these hazards without overanalyzing remote or highly unlikely hazards.

This LHMP has been developed through an extensive review of available information on hazards the SBMWD has faced in the past and most likely will face in the future. The Planning Team reviewed and discussed items that have happened in the State of California as well as disasters that have happened in other areas of the United States. The Planning Team reviewed documents such as engineering drawings, photographs, and available geotechnical and geologic data both
from the Internet and outside sources for example: FEMA Hazard Mapping, San Bernardino County hazard maps, and documents from the SBMWD on past events.

The Planning Team completed the assessment of various hazards in a group setting. The team members have many years of personal experience working in the local area and many working in a water utility. Team members know the history of past hazardous or emergency events, such as the 2003 Old Fire that severely impacted the water system in the City of San Bernardino and the San Bernardino Mountain communities. This fire started five (5) miles north of the City. Within 5 days raging fires and high Santa Ana winds devastated the area.

3.6 Set Mitigation Goals

Mitigation goals are set based on the likelihood and the potential damages for a particular hazard. The process of identifying mitigation goals began with a review and validation of damages caused by specific hazards at similar utilities in the surrounding area. Damages to other utilities outside the area were also considered.

The Planning Team set the goals for the 2018 LHMP. The team members understand and know the issues facing the SBMWD. The Water SBMWD’s mission is: “To provide a safe, reliable water supply and wastewater reclamation system for the customers of the City of San Bernardino Municipal Water (SBMWD) in an efficient and financially responsible manner.” In addition, the Planning Team developed estimated damages using engineering budget estimates for anticipated response and replacement costs. The Planning Team completed an assessment of the likelihood of damages for each identified hazard and discussed whether each of the mitigation goals was valid. This discussion led to the opportunity to identify new goals and objectives for mitigation in the LHMP. From this, the Planning Team determined the best mitigation goals are to reduce or avoid long-term vulnerabilities.

3.7 Review and Propose Mitigation Measures

Meetings were held with the Planning Team to review the identified hazards and solicit input on appropriate mitigation measures for each hazard identified in the LHMP. The Team identified mitigation measures for each critical piece of infrastructure. Each meeting focused on specific hazards of the SBMWD’s facilities, operations, and included risk assessment and mitigation strategy.

3.8 Draft the Hazard Mitigation Plan

The SBMWD’s consultant prepared the draft LHMP with input from the Planning Team, the Water Board, and the public. The Planning Team members reviewed and commented on the draft LHMP and subsequent changes were made before the LHMP was finalized and adopted by the Water Board.

The LHMP was reviewed in comparison to the FEMA designed Crosswalk. The Crosswalk links the Federal Requirements and identifies the sections in the LHMP where the information can be found. This provides a rating as to the level of compliance with the Federal Regulations.
3.9 Adoption of the Plan

The draft LHMP was posted on the SBMWD’s website for 30 days, and comments were requested from the public. Notifications of the meetings were posted on monthly bills. The public was able to comment by e-mail or telephone, as Mr. Sturdivan’s contact information was listed on the website. There were no public comments received, other than requests for water service, re-connections after lock-off, and one customer wanting a line of credit from the SBMWD; all requests were sent to Frank Salazar.

The LHMP will be adopted by SBMWD’s Board of Water Commissioners for adoption after incorporating any final comments. The LHMP will be adopted at SBMWD’s regularly scheduled Water Board meetings and sent to the FEMA for final approval.

SECTION 4: RISK ASSESSMENT

The goal of mitigation is to reduce the future impacts of a hazard including property damage, disruption to local and regional economies, and the amount of public and private funds spent for recovery. Mitigation decisions are based on risk assessments where the probability of an event is evaluated with respect to the anticipated damages caused by such an event.

The purpose of this section is to understand the hazards and their risks in the SBMWD’s service area. There are generally four steps in this process: 1) hazard identification, 2) vulnerability analysis, 3) risk analysis and 4) performing a vulnerability assessment, including an estimation of potential losses. Technically, these are four different items, but the terms are sometimes used interchangeably.

4.1 Hazard Identification

The Planning Team discussed potential hazards and evaluated their probability of occurrence. The following subsections describe this process and the results.

4.1.1 Hazard Screening Criteria

The intent of screening the hazards is to prioritize which hazards create the greatest concern to the SBMWD. A list of the natural hazards to consider was obtained from FEMA State and Local Mitigation Planning How-to Guide: Understanding Your Risks (FEMA 386-1). The Planning Team used the Stafford Act and the California Emergency Service Act and guidance from the American Water Works Association Standards G-440 and J-100 RAMCAP. Each hazard was given a number from one to four, with one having the highest probability and four having the lowest probability. The Planning Team reviewed each hazard on the list using their experience with the hazards and developed the following list:
Potential Hazards:

- Earthquake = 1
- Flooding = 2
- Wildfire = 2
- Terrorist Event = 3
- Climate Change/Drought = 3
- Windstorm = 3

The following hazards were considered not to affect or are low risk to the SBMWD:

- Volcanoes: Not a concern in this area
- Tsunami: Not in a tsunami zone
- High Groundwater/Liquefaction

Volcanoes were not included since there are no active or inactive volcanoes in the area.

Tsunami were not considered, since the Department is approximately 80-miles inland from the Pacific Ocean.

High Ground Water Liquefaction was not included as a hazard, as the ground water is no longer at 50 feet or less below the surface. Ground water tables are shown below. There is only one area in the City where high ground water still exists. This is in the Lytle Creek, where there are no buildings. The water table in the downtown area and southwest San Bernardino range from 278 feet to over 900 feet below the surface.

A location map of the sites is not included, as this information is private to a water system. The Water Department sound wells once a year. Sounding is a way of measuring the water table under-ground. This is important to ensure the level of water in the underground aquifer and to make determinations on how far underground the water table is. The chart below shows the level of the aquifer known as the Bunker Hill Basin. As shown on this chart, the water table is far below the surface and will not cause liquefaction to the community’s buildings and infrastructure in the foreseeable future.
Table 3
San Bernardino Municipal Water Department wells with water levels

SAN BERNARDINO MUNICIPAL WATER DEPARTMENT
WELLS WITH WATER LEVELS

<table>
<thead>
<tr>
<th>Label</th>
<th>Facility Name</th>
<th>Water Level*</th>
<th>Label</th>
<th>Facility Name</th>
<th>Water Level*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10TH & J ST WELL</td>
<td>278</td>
<td>32</td>
<td>EPA 007</td>
<td>211.1</td>
</tr>
<tr>
<td>2</td>
<td>16TH & SIERRA WAY WELL</td>
<td>265.2</td>
<td>33</td>
<td>EPA 108</td>
<td>311.3</td>
</tr>
<tr>
<td>3</td>
<td>17TH & SIERRA WAY 2 WELL</td>
<td>9999</td>
<td>34</td>
<td>EPA 108S</td>
<td>279.7</td>
</tr>
<tr>
<td>4</td>
<td>19TH ST WELL 1</td>
<td>365.67</td>
<td>35</td>
<td>EPA 109</td>
<td>374</td>
</tr>
<tr>
<td>5</td>
<td>19TH ST WELL 2</td>
<td>406.34</td>
<td>36</td>
<td>EPA 110</td>
<td>374.7</td>
</tr>
<tr>
<td>6</td>
<td>25TH & NORTH E ST WELL</td>
<td>314.01</td>
<td>37</td>
<td>EPA 111</td>
<td>402.1</td>
</tr>
<tr>
<td>7</td>
<td>27TH & ACACIA WELL</td>
<td>303.88</td>
<td>38</td>
<td>EPA 112</td>
<td>469.8</td>
</tr>
<tr>
<td>8</td>
<td>30TH ST WELL</td>
<td>333.13</td>
<td>39</td>
<td>GILBERT ST WELL</td>
<td>301.07</td>
</tr>
<tr>
<td>9</td>
<td>31ST ST & MT. VIEW WELL</td>
<td>338.11</td>
<td>40</td>
<td>INTER CITY MUTUAL 08</td>
<td>164.8</td>
</tr>
<tr>
<td>10</td>
<td>40TH & VALENCIA WELL</td>
<td>289.42</td>
<td>41</td>
<td>IVDA 11 WELL</td>
<td>244.15</td>
</tr>
<tr>
<td>11</td>
<td>7TH STREET WELL</td>
<td>212.05</td>
<td>42</td>
<td>KENWOOD 1 WELL</td>
<td>118.88</td>
</tr>
<tr>
<td>12</td>
<td>ANTIL 5 WELL</td>
<td>9999</td>
<td>43</td>
<td>KENWOOD 2 WELL</td>
<td>122.15</td>
</tr>
<tr>
<td>13</td>
<td>ANTIL 6 WELL</td>
<td>193.1</td>
<td>44</td>
<td>LEROY WELL</td>
<td>320</td>
</tr>
<tr>
<td>14</td>
<td>BASELINE & CALIFORNIA WELL</td>
<td>374.84</td>
<td>45</td>
<td>LYNWOOD WELL</td>
<td>316.72</td>
</tr>
<tr>
<td>15</td>
<td>CAJON 2 WELL</td>
<td>201</td>
<td>46</td>
<td>LYTE CREEK 2 WELL</td>
<td>9999</td>
</tr>
<tr>
<td>16</td>
<td>CAJON 3 WELL</td>
<td>205</td>
<td>47</td>
<td>LYTE CREEK 3-1 WELL</td>
<td>9999</td>
</tr>
<tr>
<td>17</td>
<td>CAJON 4 WELL</td>
<td>202</td>
<td>48</td>
<td>MALLORY NO.3 WELL</td>
<td>405</td>
</tr>
<tr>
<td>18</td>
<td>CAJON CANYON WELL</td>
<td>76.03</td>
<td>49</td>
<td>MEEKS & DALEY GEO WELL</td>
<td>9999</td>
</tr>
<tr>
<td>19</td>
<td>DEVIL CANYON 1</td>
<td>175</td>
<td>50</td>
<td>MILL & ARROWHEAD</td>
<td>9999</td>
</tr>
<tr>
<td>20</td>
<td>DEVIL CANYON 2</td>
<td>167.7</td>
<td>51</td>
<td>MILL & D GEO WELL</td>
<td>158.3</td>
</tr>
<tr>
<td>21</td>
<td>DEVIL CANYON 3</td>
<td>24.4</td>
<td>52</td>
<td>MILL & D WELL</td>
<td>163.3</td>
</tr>
<tr>
<td>22</td>
<td>DEVIL CANYON 4</td>
<td>43.3</td>
<td>53</td>
<td>MT VERNON WATER CO WELL</td>
<td>401.25</td>
</tr>
<tr>
<td>23</td>
<td>DEVIL CANYON 5</td>
<td>173.6</td>
<td>54</td>
<td>NEWMARK 1 WELL</td>
<td>211.33</td>
</tr>
<tr>
<td>24</td>
<td>DEVIL CANYON 6</td>
<td>24.54</td>
<td>55</td>
<td>NEWMARK 2 WELL</td>
<td>206.94</td>
</tr>
<tr>
<td>25</td>
<td>DEVIL CANYON 7</td>
<td>21</td>
<td>56</td>
<td>NEWMARK 3 WELL</td>
<td>212</td>
</tr>
<tr>
<td>26</td>
<td>EPA 001</td>
<td>254.5</td>
<td>57</td>
<td>NEWMARK 4 WELL</td>
<td>208.5</td>
</tr>
<tr>
<td>27</td>
<td>EPA 002</td>
<td>283.3</td>
<td>58</td>
<td>OLIVE & GARNER WELL</td>
<td>349</td>
</tr>
<tr>
<td>28</td>
<td>EPA 003</td>
<td>248</td>
<td>59</td>
<td>PERRIS HILL 4 WELL</td>
<td>283.7</td>
</tr>
<tr>
<td>29</td>
<td>EPA 004</td>
<td>231</td>
<td>60</td>
<td>PERRIS HILL 5 WELL</td>
<td>282.6</td>
</tr>
<tr>
<td>30</td>
<td>EPA 005</td>
<td>216.4</td>
<td>61</td>
<td>VINCENT WELL</td>
<td>82.2</td>
</tr>
<tr>
<td>31</td>
<td>EPA 006</td>
<td>216.4</td>
<td>62</td>
<td>WATERMAN AVE. WELL</td>
<td>322</td>
</tr>
</tbody>
</table>

WATER LEVELS RECORDED DECEMBER 2018
4.1.2 Hazard Assessment Matrix

The SBMWD used a qualitative ranking system for the hazard screening process consisting of generating a high/medium/low style rating for the probability and impact of each screened hazard.

- For **Probability**, the ratings are: Highly Likely, Likely, or Somewhat Likely
- For **Impact**, the ratings are: Catastrophic, Critical, or Limited

The Screening Assessment Matrix, shown in Table 4 below, was used for the SBMWD’s hazards. The hazards were placed in the appropriate cell based on the Planning Team’s collective experience. A subset of this group of hazards was used for the prioritization of the hazards in the following section.

- (1) Highly Likely = 100% likely to happen in the next five years
- (2) Likely = 75%, wildfire and flooding happen hand in hand, every 5-7 years
- (3) Somewhat Likely = 65% Drought 5 to 7 years, windstorms yearly,
- Catastrophic = 100% of the SBMWD is impacted
- Critical = 50% of the SBMWD is impacted
- Limited = less than 50% of the SBMWD is impacted

Table 4
Screening Assessment Matrix

<table>
<thead>
<tr>
<th>Probability</th>
<th>Impact</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catastrophic</td>
<td>Critical</td>
<td>Limited</td>
</tr>
<tr>
<td>Highly Likely (1)</td>
<td>Earthquake</td>
<td></td>
<td>Windstorm</td>
</tr>
<tr>
<td>100%</td>
<td>Southern San</td>
<td></td>
<td>Windstorms are yearly</td>
</tr>
<tr>
<td>Andreas 157 years</td>
<td>flooding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>overdue</td>
<td>Wildfire</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yearly to 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likely (2)</td>
<td>Flooding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% to 100%</td>
<td>Wildfire</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yearly to 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat Likely (2)</td>
<td>Terrorist</td>
<td></td>
<td>Climate Change/Drought</td>
</tr>
<tr>
<td>65%</td>
<td>Event</td>
<td></td>
<td>Drought 5 to 7 years</td>
</tr>
<tr>
<td></td>
<td>Has happened</td>
<td></td>
<td>Climate ongoing</td>
</tr>
<tr>
<td></td>
<td>three times</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the past</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.3 Hazard Prioritization

Using the hazard screening criteria and assessment matrix, the Planning Team identified the following hazards to be the most likely to affect the SBMWD. The team of water professionals from the Department reviewed the FEMA shake map, 100-500 flood map and the fire map. The team reviewed history of hazards and concerns for the service area. The team discussed the information and reviewed internal documents as well as the agency’s Vulnerability Assessment for risk. All team members, outside reviewers and the public agreed to the prioritization of hazards and to remove those hazards that are not considered to be a threat any longer from the ranking.

Earthquake (Highly Likely, Catastrophic): There are many faults running though the SBMWD’s service area. The 1992 Landers earthquake caused little damage to the SBMWD’s distribution system, wells, and reservoirs. The biggest concern for the agency is the San Andreas and San Jacinto faults, as the San Andreas runs though the north section of the Department and the San Jacinto fault runs though the west boundaries and somewhat the south boundaries of the City. Liquefication during earthquakes was a major issue for the Department and City in the past. In the 1950’s though the 1980’s the underground water table was 50 feet or less. However, as the population of the valley increased, so did the pumping of water from the Bunker Hill Basin. Today the water level is more than 150 feet and up to 999 feet below the surface. Therefore, the water experts at the Water Department, removed liquefaction from the hazard list. Appendix H contains a chart of the current water table within SBMWD’s service area. The last earthquake of any size that was felt in San Bernardino was the 1992 Landers Earthquake and the 1992 Big Bear Earthquake.

Flooding (Likely, Catastrophic): Flash flooding is very common in San Bernardino County and happens almost yearly. The most recent major flooding event was in 2017, and prior to that, 2015 and 2011. These events uncover pipelines installed within roadways, destroy bridges, undermine tanks and reservoirs, down power lines, contaminate water wells and overload sewerage collection systems and sewage treatment facilities. Flooding and debris flow is something that is very common after there has been a wildfire in the San Bernardino Mountains, as the wildfires normally happen in the fall during Santa Ana winds. Rainstorms start in the winter months, which bring all the debris and loose soil down from the fire scarred mountains into the valley causing major damage to the pipelines of the water and wastewater system facilities. A large portion of SBMWD’s service area is in the 100-500 year flood plain, making flooding a serious concern.

Wildfire (Likely, Catastrophic): Wildfires are common in California, primarily occurring in the fall “Fire Season” and are related to Santa Ana winds. The vegetation in the mountains and foothills grow at a rapid rate in the winter, spring, and summer months. When fall arrives, the Santa Ana winds start to blow. These winds are very dry and hot. This action dries all of the plant life out, so when there is a spark or someone lights a fire in the dry grasses, a large uncontrollable fire erupts. Once a fire gets a strong hold, the fire is driven by the winds, either into the valley communities or into the mountains. The fires in California cost millions of dollars of property damage each year and claim lives when people cannot escape. The last major fire that affected the SBMWD was the Old Fire in 2003. This fire
erupted on October 25th 2003 and burned many homes down within the City of San Bernardino city limits. This fire caused approximately two (2) million dollars’ worth of property damage to the SBMWD.

Terrorist Event (Somewhat Likely, Critical): The City and the surrounding area have been subject to several terrorist events in the past. San Bernardino was home to Norton Airforce Base. In 2007, there was an attack on the chlorine gas 1-ton tanks at three City of Riverside owned wells that are in the City of San Bernardino’s boundaries. There was another attack on December 2, 2015, where 14 people were killed, and 22 people were injured. A major terrorist event on the water system could have a negative effect on the water supply or damage the infrastructure of the SBMWD, leaving the SBMWD with no power and no water in the system due to ruptured pipelines, contamination, or other damages. Since the terrorist attack in San Bernardino, most governmental agencies have had to rethink their precautions for buildings and infrastructure protection, as well as the protection of the public and staff.

Climate Change/Drought (Somewhat Likely, Limited): Climate change is altering California’s water supply throughout the state. Northern California is experiencing warmer winters, less snow pack, and longer periods between wet seasons. This affects water supply throughout the Central Valley and urban Southern California. SBMWD depends on imported water from Northern California to recharge the underground aquifer. The SBMWD relies on groundwater and the impacts from climate change are long-term. Higher temperatures may increase water use and groundwater extraction, which will lower the groundwater table. Increased storm events will increase flash flood risks and will decrease groundwater recharge because the water will runoff instead of infiltrating to groundwater. Over time the SBMWD could experience increased pumping costs and water supply wells may become too shallow and have to be replaced with deeper wells. Climate change also increases the likelihood of fire risk.

Currently, the State is not in a prolonged drought; however, the recent 2015 to 2017 drought declared by Governor Jerry Brown demonstrated the need for water conservation.

Windstorm (Somewhat Likely, Limited): Santa Ana winds are part of Southern California life and occur several times a year. The winds can reach gusts of over 150 mph and happen in the fall and winter months. The winds occur when a high-pressure area develops over the Great Basin in Nevada and Utah; with a clockwise anticyclone wind flow of the high-pressure center, giving rise to a Santa Ana wind event as the air mass flows though the passes and canyons of Southern California, manifesting as a dry wind. The highest winds occur when a low-pressure area settles over the Southern California Coast and draws the winds out to the Pacific Ocean.

4.2 Hazard Profiles

This section looks at all of the hazards identified by the Planning Team. This section gives an overview of each hazard, the definition of each hazard, and a description of how each hazard affects the SBMWD using past examples and the hazards identified on the FEMA Website and
the FEMA computer program known as HAZUS, which contains models of natural disasters, and the effects the disasters can have on a region.

4.2.1 Earthquake

Probability: Highly Likely
Impact: Catastrophic

General Definition: An earthquake is a sudden, rapid shaking of the earth caused by the breaking and shifting of rock beneath the earth's surface. For hundreds of millions of years, the forces of plate tectonics have shaped the earth as the huge plates that form the earth's surface move slowly over, under, and past each other. Sometimes the movement is gradual. Increased movement occurs when the plates become locked together, unable to release the accumulating energy. When the accumulated energy grows strong enough, the plates break free causing the ground to shake. Most earthquakes occur at the boundaries where the plates meet. However, some earthquakes occur in the middle of plates.

Ground shaking from earthquakes can collapse buildings and bridges; disrupt gas, electric, water utilities, and phone service; and trigger landslides, avalanches, fires, and destructive ocean waves, including tsunamis. Buildings with foundations resting on unconsolidated landfill and other unstable soil, as well as homes not tied to their foundations, are at risk because they can be shaken off their mountings even during a mild earthquake. When an earthquake occurs in a populated area, it may cause deaths, injuries, and extensive property damage.

Earthquakes strike suddenly and without warning. Earthquakes can occur at any time of the year and at any time of the day or night. On a yearly basis, 70 to 75 damaging earthquakes occur throughout the world. Estimates of losses from a future earthquake in the United States is approaching $200 billion.

There are 45 states and territories in the United States at moderate to very high risk from earthquakes, and they are in every region of the country. California experiences the most frequent damaging earthquakes; however, Alaska experiences the greatest number of large earthquakes, most located in uninhabited areas. The nearby southern section of the San Andreas Fault is ranked in the top five (5) most likely faults to cause major damage in the United States by United States Geological Survey (USGS).

The source for the earthquake profile is a report that describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007). The Earthquake Working Group was organized in September 2005 by the USGS, the California Geological Survey (CGS), and the Southern California Earthquake Center (SCEC) to better understand the locations of faults in California. The group produced a revised, time-independent forecast for California for the National Seismic Hazard Map. The last two earthquakes that did some damage to SBMWD infrastructure was the 1992 Landers Earthquake and the 1992 Big Bear Earthquake. The Hector Mine, Northridge and Corona earthquakes were felt in the service boundaries, but did no damage to the infrastructure.
Description: There are several earthquake faults located within the SBMWD’s service area. While there have been many earthquakes in and around the SBMWD’s service area, there has not been a major earthquake in San Bernardino in many years. The two major earthquake faults in San Bernardino Valley are the southern section of the San Andreas Fault and the San Jacinto Fault. These two faults and their many sub-faults cover the northern and southern sections of the SBMWD’s service area. See Table 5 below for the historical earthquake information.

Mitigation: Projects to help mitigate damage from earthquakes are installing seismic shut-off valves on all water reservoirs and flexible pipe joints at reservoirs, wells, and booster pumps. Flexible pipe joints can also be installed in sections of the water pipelines to allow the pipelines more flexibility during earth movement. Block walls can be installed around facilities to help control water that may escape from reservoirs and also provide the added benefit of increased security of critical facilities.

Figure 1
Shake Map for 7.8 EQ Southern San Andreas Fault
Figure 2
Southern California (East) Shake Out Area, Probability of Shaking
Figure 2 A
The Great ShakeOut Map
Figure 2 B
Earthquake Faults Lines in San Bernardino Valley

Quaternary Fault Data Source:
U.S. Geological Survey and California Geological Survey, 2006,
Quaternary fault and fold database for the United States, accessed Jan 9, 2006, from USGS web site.
<table>
<thead>
<tr>
<th>Date</th>
<th>Area</th>
<th>Location</th>
<th>Mag</th>
<th>MI</th>
<th>Total damage / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/28/2014</td>
<td>Los Angeles Area</td>
<td></td>
<td>5.1 M(_w)</td>
<td>VI</td>
<td>$10.8 million</td>
</tr>
<tr>
<td>5/13/2013</td>
<td>Eastern</td>
<td>Canyon Dam Earthquake</td>
<td>5.7 M(_w)</td>
<td>VIII</td>
<td>Damage at Canyon dam</td>
</tr>
<tr>
<td>7/29/2008</td>
<td>Los Angeles Area</td>
<td>Chino Hills Earthquake</td>
<td>5.5 M(_w)</td>
<td>VI</td>
<td>Limited</td>
</tr>
<tr>
<td>10/16/1999</td>
<td>Eastern</td>
<td>Hector Mine Earthquake</td>
<td>7.1 M(_w)</td>
<td>VII</td>
<td>Limited</td>
</tr>
<tr>
<td>1/17/1994</td>
<td>Los Angeles Area</td>
<td>Northridge Earthquake</td>
<td>6.7 M(_w)</td>
<td>IX</td>
<td>$13–$40 billion</td>
</tr>
<tr>
<td>6/28/1992</td>
<td>Inland Empire</td>
<td>Big Bear Earthquake</td>
<td>6.5 M(_w)</td>
<td>VIII</td>
<td>Moderate/Triggered</td>
</tr>
<tr>
<td>6/28/1992</td>
<td>Inland Empire</td>
<td>Landers Earthquake</td>
<td>7.3 M(_w)</td>
<td>IX</td>
<td>$92 million</td>
</tr>
<tr>
<td>4/22/1992</td>
<td>Inland Empire</td>
<td></td>
<td>6.3 M(_s)</td>
<td>VII</td>
<td>Light–moderate</td>
</tr>
<tr>
<td>6/28/1991</td>
<td>Los Angeles Area</td>
<td>Sierra Madre Earthquake</td>
<td>5.6 M(_w)</td>
<td>VII</td>
<td>$33.5–40 million</td>
</tr>
<tr>
<td>2/28/1990</td>
<td>Los Angeles Area</td>
<td>Upland Earthquake</td>
<td>5.7 M(_w)</td>
<td>VII</td>
<td>$12.7 million</td>
</tr>
<tr>
<td>11/24/1987</td>
<td>Imperial Valley</td>
<td></td>
<td>6.5 M(_w)</td>
<td>VII</td>
<td>Triggered</td>
</tr>
<tr>
<td>11/23/1987</td>
<td>Imperial Valley</td>
<td></td>
<td>6.1 M(_w)</td>
<td>VI</td>
<td>$3 million</td>
</tr>
<tr>
<td>10/1/1987</td>
<td>Los Angeles Area</td>
<td>Whittier Narrows Earthquake</td>
<td>5.9 M(_w)</td>
<td>VIII</td>
<td>$213–358 million</td>
</tr>
<tr>
<td>7/21/1986</td>
<td>Eastern</td>
<td>Chalfant Valley Earthquake</td>
<td>6.2 M(_w)</td>
<td>VI</td>
<td>$2.7 million / sequence</td>
</tr>
<tr>
<td>7/13/1986</td>
<td>South Coast</td>
<td></td>
<td>5.8 M(_w)</td>
<td>VI</td>
<td>$700,000</td>
</tr>
<tr>
<td>7/8/1986</td>
<td>Inland Empire</td>
<td>North Palm Springs Earthquake</td>
<td>6.0 M(_w)</td>
<td>VII</td>
<td>$4.5–6 million</td>
</tr>
<tr>
<td>4/26/1981</td>
<td>Imperial Valley</td>
<td></td>
<td>5.9 M(_w)</td>
<td>VII</td>
<td>$1–3 million</td>
</tr>
<tr>
<td>5/25/1980</td>
<td>Eastern</td>
<td></td>
<td>6.2 M(_w)</td>
<td>VII</td>
<td>$1.5 million/Swarm</td>
</tr>
<tr>
<td>10/15/1979</td>
<td>Imperial Valley</td>
<td>Imperial Valley Earthquake</td>
<td>6.4 M(_w)</td>
<td>IX</td>
<td>$30 million</td>
</tr>
<tr>
<td>2/21/1973</td>
<td>South Coast</td>
<td>Point Magu Earthquake</td>
<td>5.8 M(_w)</td>
<td>VII</td>
<td>$1 million</td>
</tr>
<tr>
<td>2/9/1971</td>
<td>Los Angeles Area</td>
<td>San Fernando Earthquake</td>
<td>6.5–6.7 M(_w)</td>
<td>XI</td>
<td>$505–553 million</td>
</tr>
<tr>
<td>4/8/1968</td>
<td>Imperial Valley</td>
<td></td>
<td>6.5 M(_w)</td>
<td>VII</td>
<td>Damage / rockslides</td>
</tr>
<tr>
<td>12/4/1948</td>
<td>Inland Empire</td>
<td>Desert Hotsprings Earthquake</td>
<td>6.4 M(_w)</td>
<td>VII</td>
<td>Minor</td>
</tr>
<tr>
<td>11/14/1941</td>
<td>Los Angeles Area</td>
<td></td>
<td>5.4 M(_s)</td>
<td>VIII</td>
<td>$1.1 million</td>
</tr>
<tr>
<td>6/30/1941</td>
<td>Central Coast</td>
<td></td>
<td>5.9 M(_w)</td>
<td>VIII</td>
<td>$100,000</td>
</tr>
<tr>
<td>Date</td>
<td>Location</td>
<td>Earthquake</td>
<td>Magnitude</td>
<td>Intensity</td>
<td>Damage Cost</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5/18/1940</td>
<td>Imperial Valley</td>
<td>El Centro Earthquake</td>
<td>6.9 M<sub>W</sub></td>
<td>X</td>
<td>$6 million</td>
</tr>
<tr>
<td>3/10/1933</td>
<td>South Coast</td>
<td>Long Beach Earthquake</td>
<td>6.4 M<sub>W</sub></td>
<td>VIII</td>
<td>$40 million</td>
</tr>
<tr>
<td>6/21/1920</td>
<td>Los Angeles Area</td>
<td></td>
<td>4.9 M<sub>L</sub></td>
<td>VIII</td>
<td>More than $100,000</td>
</tr>
<tr>
<td>4/21/1918</td>
<td>Inland Empire</td>
<td>San Jacinto Earthquake</td>
<td>6.7 M<sub>W</sub></td>
<td>IX</td>
<td>$200,000</td>
</tr>
<tr>
<td>6/22/1915</td>
<td>Imperial Valley</td>
<td></td>
<td>5.5 M<sub>W</sub></td>
<td>VIII</td>
<td>$900,000</td>
</tr>
<tr>
<td>4/18/1906</td>
<td>Imperial Valley</td>
<td></td>
<td>6.3 M<sub>W</sub></td>
<td>VIII</td>
<td>Damage / triggered</td>
</tr>
</tbody>
</table>

Pictures below are from Hi-Desert WD and Bighorn Desert View Water Agencies

Figure 3
Examples of Earthquake Damage to Water Facilities in the 1992 Landers Earthquake
4.2.2 Flooding

Probability: Likely
Impact: Catastrophic

General Definition: An unusually heavy rain in a concentrated area, over a short or long period of time that collects on the ground in low areas of the land. Flooding occurs when there are large amounts of rainfall in areas were the water runs off to lower elevations. Typically, flooding happens in the valley when there are large tropical storms in the local mountains. The major concern is after there has been a major fire in the San Bernardino Mountains. Historically, major fires have happened in the fall or summer. The last major wildfire was in October 2003, which brought major flooding in December 2003 and again in January of 2004.

Description: Flooding can occur in the summer as well as the winter. Monsoon season is typically in June and July of each year. During monsoons, heavy rainstorms that form in the Gulf of Mexico move into Arizona, New Mexico, Texas, and the California deserts. These storms bring powerful winds and heavy rains within a short period of time and can produce two to five inches of rain within a half-hour period.

FEMA Flash Flooding and or Flood Inundation Mapping:

The FEMA 500-year flood map is included below in Figure 4. A 500-year flood is only in a small portion of the service area along the river bottom area, (pink and purple area) where most of the SBMWD’s water supply wells are located. All of the well motors are installed on elevated concrete pads that raise the well motor to a height above the 500-year high water elevation.

Flooding only happens when water can collect in valleys or lower lying areas. The SBMWD is located in the valley and foothills, where water runs off from higher mountainous areas on its way to the dry lake area and dry riverbed on the desert floor. These waters are very dangerous, since the waters can come from many miles away at very fast speeds. These waters rage through the jurisdiction from the west to the east collecting in the wash area noted on the map. These washes run north to south through the SBMWD’s service area.
Figure 4
FEMA 500-Year Flood Map Showing Service Area
<table>
<thead>
<tr>
<th>Date of event</th>
<th>Type of Damage</th>
<th>Amount of Damage</th>
<th>Statewide or Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-55</td>
<td>74 deaths</td>
<td>$200 M</td>
<td>State wide</td>
</tr>
<tr>
<td>Apr-58</td>
<td>13 deaths, several injuries</td>
<td>$20 M, plus $4 M agricultural</td>
<td>State wide</td>
</tr>
<tr>
<td>Fall 1965</td>
<td>Abnormally heavy and continuous rainfall.</td>
<td>Public- $5.8 M; private $16.0 M; Total $21.8 M</td>
<td>Riverside, San Bernardino, Ventura, San Diego Counties</td>
</tr>
<tr>
<td>Winter 1966</td>
<td>Abnormally heavy and continuous rainfall.</td>
<td>Public- $14.6 M; private $14.1M; Total $28.7 M</td>
<td>Various</td>
</tr>
<tr>
<td>Winter 1969</td>
<td>Storms, flooding, 47 dead, 161 injured. An alluvial flood and debris flow on Deer Creek in San Bernardino County killed 11 people.</td>
<td>Public $185 M, Private - $115 M; Total $300 M</td>
<td>Various</td>
</tr>
<tr>
<td>Sep-1976</td>
<td>High winds, heavy rains, and flooding</td>
<td>Public $65.7 M; private- $54.3 M; Total $120 M</td>
<td>Imperial, Riverside, San Bernardino, San Diego Counties</td>
</tr>
<tr>
<td>Winter 1978</td>
<td>14 dead, at least 21 injured</td>
<td>Public $73 M; private-$44 M; Total $117 M; 2,538 homes destroyed</td>
<td>Various</td>
</tr>
<tr>
<td>Jul-1979</td>
<td>No Deaths</td>
<td>Public $3.0 M; private- $22.9 M; Total $25.9 M</td>
<td>Riverside</td>
</tr>
<tr>
<td>Feb-1980</td>
<td>Rain, wind, mud slides, and flooding</td>
<td>18M to 20M</td>
<td>Various</td>
</tr>
<tr>
<td>Winter 1982-1983</td>
<td>Heavy rains, high winds, flooding, levee breaks</td>
<td>Public $151 M; private $159 M; agricultural $214 M; Total $524 M</td>
<td>Various</td>
</tr>
<tr>
<td>Aug-1983</td>
<td>High winds, storms, and flooding; 3 deaths</td>
<td>Public $10 M, private $15 M; agricultural $10 M; TOTAL $35 M</td>
<td>Inyo, Riverside, San Bernardino Counties</td>
</tr>
<tr>
<td>Feb-1992</td>
<td>Flash Flooding, rainstorms, mud slides; 5 deaths</td>
<td>Public-$95 M; private- $18.5 M; business $8.5 M; agricultural $1.5 M; TOTAL $123 M</td>
<td>Los Angeles, Ventura, Kern, Orange, San Bernardino Counties</td>
</tr>
<tr>
<td>Dec-1992</td>
<td>Snow, rain, and high winds, 20 deaths, 10 injuries</td>
<td>Total - $600 M</td>
<td>Various</td>
</tr>
<tr>
<td>Jan-1995</td>
<td>11 deaths</td>
<td>Public $299.6 M; individual $128.4 M; businesses $58.4 M; highways $158 M; ag-$97 M; TOTAL $741.4 M; damage to homes: major-1,883; minor 4, 179; destroyed-370.</td>
<td>Various</td>
</tr>
</tbody>
</table>
Date of event | Type of Damage | Amount of Damage | Statewide or Local
--- | --- | --- | ---
Feb-1995 | 17 deaths | Public property $190.6 M; individual $122.4 M; business $46.9 M; highways $79 M; ag $651.6 M; TOTAL approximately $1.1 billion; damage to homes: major-1,322; minor-2,299; destroyed 267 | 57 counties (all except Del Norte)
Feb-1998 | 17 deaths | $550 M | Various
Dec. - 2003 | 15 deaths | $30 M | San Bernardino, Waterman Canyon, Lytle Creek
Jan. 2004 | None | $20,000 public property | San Bernardino County High Desert
October 2010 | None | $2.5 M | Flash flooding San Bernardino County High Desert
May 2012 March 2014 | None | $50,000 | S.B. County High Desert Various

Tropical Storms Cited in FEMA HAZUS (extracted without references and links)

Tropical Storm Norman, August – September 1978

A flash flood watch was issued for the mountainous terrain and the desert region from Kern County to the California-Mexico border by the US National Weather Service.

A large amount of rain was produced, with over 7.01 in. (178 mm) of rain occurred in the Sierra Nevada range at Lodgepole in Sequoia National Park. Rainfall was most intense on September 5 and September 6, with amounts exceeding 3 in (76 mm) in the mountains of Southern California. In addition, Norman produced waves up to 15 feet (4.6 m) high.

The extra tropical remains of Hurricane Norman also moved into Nevada and produced very significant amounts of rainfall in the extreme central to northern portion of the state. Power lines were knocked down and caused a brief power failure from Santa Barbara to San Diego, reported by the Los Angeles Department of Water and Power, Southern California Edison, and San Diego Gas and Electric. The high winds tossed about ships in local harbors and damaged agricultural crops, specifically raisin crops in Southern California. Damage to raisins was extensive throughout Kern, Tulare, and Stanislaus Counties. The rainfall also damaged grapes and 1,500 people had to be rescued due to high waves. A 25-foot US Navy cruiser was smashed and destroyed when surf washed it ashore with an approximately 150 foot wave, near Dana Point.
The storm also produced surging tides at the Los Angeles Harbor, and swept a 10,000-ton tanker from its moorings. The tropical cyclone had managed to cause $300 million (1978 USD) in damages.

Tropical Storm 1939 Long Beach tropical storm, El Cordonazo, The Lash of St. Francis, September 1939

The storm dropped heavy rain on California, with 5.66 inches (144 mm) falling in Los Angeles (5.24 inches in 24 hours) and 11.60 inches (295 mm) recorded at Mount Wilson, both September records. Over three hours, one thunderstorm dropped 7 inches (180 mm) of rain on Indio. 9.65 inches fell on Raywood Flat, and 1.51 inches (38 mm) on Palm Springs. 4.83 inches fell on Pasadena, a September record at the time. At the Citrus Belt near Anaheim, at least 4.63 inches of rain fell. The 11.60 inches (295 mm) at Mount Wilson is one of California’s highest rainfall amounts from a tropical cyclone, although at least one system has a higher point maximum. The rains caused flooding 2 to 4 feet (1.2 m) deep in the Coachella Valley, although some of this may be attributable to a rainstorm dropping 6.45 inches (164 mm) the day before the storm hit. The Los Angeles River, which is usually low during September, became a raging torrent.

The flooding killed 45 people in Southern California, although some of these may be attributable to the rain immediately before the tropical storm. At sea, 48 were killed. The National Hurricane Center only attributes 45 deaths to this system. Six people caught on beaches drowned during the storm. Most other deaths were at sea, for example, 24 people died aboard a vessel called the Spray as it attempted to dock at Point Mugu. The two survivors, a man and a woman, swam ashore and then walked five miles (8 km) to Oxnard. Fifteen people from Ventura drowned aboard a fishing boat called the Lur. Many other vessels were sunk, capsized, or blown ashore.

Many low-lying areas were flooded. The Hamilton Bowl overflowed, flooding the Signal Hill area. Along the shore from Malibu to Huntington Beach houses were flooded. Throughout the area thousands of people were stranded in their homes. Streets in Los Angeles proper were covered with water, flooding buildings and stalling cars. Flooding in Inglewood and Los Angeles reached a depth of 2 to 3 feet. The flooding stopped construction on a flood control project in the Los Angeles River’s channel by the Army Corps of Engineers. In Long Beach windows throughout the city were smashed by the wind. At Belmont Shore waves undermined ten homes before washing them away. Debris was scattered throughout the coast. Agriculture was disrupted and it was estimated that 75% of crop damage occurred in the Coachella Valley.

Rains washed away a 150-foot (46 m) section of the Southern Pacific Railroad near Indio, and a stretch of the Santa Fe main line near Needles. Waters backing up from a storm drain under construction in the Santa Monica Valley blocked U.S. Route 66 California. The pier at Point Mugu was washed away. In Pasadena, 5,000 people were left without electricity and 2,000 telephones lost service. Communications throughout the affected area was disrupted or rendered impossible. The total amount of damage was $2 million (1939 USD, 26.2 million 2005 USD).

The tropical storm was credited with at least one beneficial effect: It ended a vicious heat wave that had lasted for over a week and killed at least 90 people.
People were caught unprepared by the storm, which was described as “sudden.” Some people were still on the beach at Long Beach when the wind reached 40 miles per hour, at which time lifeguards closed the beach. Schools were also closed. At sea, the Coast Guard and Navy conducted rescue operations, saving dozens of people. In response to Californians’ unpreparedness, the Weather Bureau established a forecast office for Southern California, which began operations in February 1940.

Mitigation: Install flood control walls to direct floodwaters away from facilities. Lower pipelines where needed. Install better drainage structures to remove floodwaters out of the facilities and improve drainage from facilities.
4.2.3 Wildfire

Probability: Likely
Impact: Catastrophic

General Definition: California is very susceptible to wildfires, especially during the fall and summer months. Southern California experiences the Santa Ana winds that develop mostly in the late summer and fall. These winds are known for their high speeds and drying effect, which turn the natural grasses brown and dry. These winds are also capable of blowing down power lines that are known to start fires in the mountains and hills. The fires are driven by the high winds and the fires become large events that destroy large areas within cities and towns and cause loss of life and millions of dollars in damage to property. The last major wildfire in the San Bernardino area was the 2003 “Old Fire”.

Description: Local facility fires are a significant concern. The SBMWD’s office facilities, computer systems, SCADA system, and operating pump stations are susceptible to fire damage. The consequences include loss of life, buildings, equipment, and property damage.

Wildfires are not expected to directly affect the water infrastructure system because most of the infrastructure is underground and constructed of non-flammable materials. In addition, the local vegetation is such that wild fires are not expected to occur within the SBMWD boundaries.

There are other issues from wildfires that affect the SBMWD. During large wildfires, firefighting personnel may draw large amounts of water and strain the water supply system. The fires also burn though electrical power lines and the SBMWD can lose power in critical areas. Without power the SBMWD cannot pump groundwater from the aquifer or pump additional water to needed areas. The last major fire was the 2003 “Old Fire” which caused major damage to reservoir sites, well sits, booster stations and pipeline failures in the Departments service area.

Mitigation: Install backup generators. Improve communication between the SBMWD and the public, firefighting personnel, the City, and the County Offices of Emergency Services. Purchase water booster pumps to move water from one zone to another zone in the system. Set up a dedicated Emergency Operations Center in the SBMWD. Train staff in emergency operations and conduct emergency exercises.
Figure 5
Fire Hazard Severity Zone Map Showing San Bernardino MWD Outline
4.2.4 Terrorist Event

Probability: Somewhat Likely
Impact: Critical

General Definition: When a person or group of people strike mayhem within a population by threatening the trust of a population. To kill or injure people to make a point to the terrorist cause and to cause fear within the population to further their cause.

Description: In the case of a public water system, to make the water non-drinkable by polluting the water or rendering the water in the system or the system infrastructure useless to serve water to the public.

Mitigation: This document will not discuss the mitigation measures determined by the Project Team due to the sensitive nature of this information, as this LHMP is a public document.

4.2.5 Climate Change/Drought

Probability: Somewhat Likely
Impact: Limited

Climate Change

General Definition: Climate Change is a change in the statistical distribution of weather patterns when that change lasts for an extended period of time (i.e., decades to millions of years). Climate change may refer to a change in average weather conditions, or in the time variation of weather around longer-term average conditions (i.e., more or fewer extreme weather events). Climate change is caused by factors such as biotic processes, variations in solar radiation received by the earth, plate tectonics, and volcanic eruptions. Certain human activities have also been identified as significant causes of recent climate change, often referred to as global warming.

Description: Climate change could increase water demands while lowering the groundwater table. This will result in increased pumping costs and may require installing deeper water supply wells. Extreme weather events will increase runoff and flash flooding while reducing the groundwater recharge.

Mitigation: Monitor groundwater levels and evaluate long-term trends. Study the long-term viability of the groundwater aquifer. Evaluate and possibly implement groundwater recharge projects, such as flood flow diversions to percolation basins.

Drought

General Definition: A drought is a period of below-average precipitation in a given region resulting in prolonged shortages in its water supply, surface water, or ground water. Droughts
occur when there are long periods of inadequate rainfall. The cycle of droughts and wet periods are in terms of El Nino and La Nina weather events. This is a growing concern in California, as the state has been in a drought for the last eight years. Northern California experienced some relief in the winter of 2016, although the El Nino effect that was expected to relieve the drought statewide did not materialize in Southern California. The lack of rain and most importantly the lack of snowfall in the Sierra Nevada mountain range severely impacted the residents of California.

Description: The desert communities in San Bernardino County are not as affected by drought because these communities, including the SBMWD, receive most of their water supply from groundwater. These communities are dependent on underground water aquifers. The SBMWD purchases water though the State Water provider (San Bernardino Valley Municipal Water District). The purchased water is used in percolation ponds that recharge the underground aquifer. The SBMWD’s underground aquifers are not in overdraft. It is understood that another 8 to 10 years of little or no rain and no purchased water for recharging will be needed to make a significant impact to the SBMWD’s water supply.

The National Integrated Drought Information System (NIDIS) is a tool that measures the drought-related risks in certain areas of the country. Figure 6 below shows that the San Bernardino area is currently in a moderate drought event and is moving to a severe drought event as Southern California moves into the summer months.

Figure 6
Current Drought Conditions in San Bernardino as of May 2018
Table 7
California Drought History

(extracted from USGS, California Drought History)

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1841</td>
<td>The drought was so bad that "a dry Sonoma was declared entirely unsuitable for agriculture"</td>
</tr>
<tr>
<td>1864</td>
<td>This drought was preceded by the torrential floods of 1861-1862, showing the fluctuation in climate back in the 1800s.</td>
</tr>
<tr>
<td>1924</td>
<td>This drought encouraged farmers to start using irrigation more regularly because of the fluctuation in California weather the need for consistent water availability was crucial for farmers.</td>
</tr>
<tr>
<td>1929–1934</td>
<td>This drought was during the infamous Dust Bowl period that ripped across the plains of the United States in the 1920s and 1930s. The Central Valley Project was started in the 1930s in response to drought.</td>
</tr>
<tr>
<td>1950s</td>
<td>The 1950s drought contributed to the creation of the State Water Project.</td>
</tr>
<tr>
<td>1976–1977</td>
<td>1977 had been the driest year in state history to date. According to the Los Angeles Times, "Drought in the 1970s spurred efforts at urban conservation and the state's Drought Emergency Water Bank came out of drought in the 1980s."</td>
</tr>
<tr>
<td>2007–2009</td>
<td>2007–2009 saw three years of drought conditions, the 12th worst drought period in the state's history, and the first drought for which a statewide proclamation of emergency was issued. The drought of 2007–2009 also saw greatly reduced water diversions from the State Water Project. The summer of 2007 saw some of the worst wildfires in Southern California history.</td>
</tr>
<tr>
<td>2011-2017</td>
<td>From December 2011 to March 2017, California experienced one of the worst droughts to occur in the region on record. The period between late 2011 and 2014 was the driest in California history since record keeping began.</td>
</tr>
</tbody>
</table>

Progression of the drought from December 2013 to July 2014

(extracted from USGS, California Drought History)

The period between late 2011 and 2014 was the driest in California history since record keeping began. In May 2015, a state resident poll conducted by Field Poll found that two out of three respondents agreed that it should be mandated for water agencies to reduce water consumption by 25%.

The 2015 prediction of El Niño to bring rains to California raised hopes of ending the drought. In the spring of 2015, the National Oceanic and Atmospheric Administration named the probability of the presence of El Niño conditions until the end of 2015 at 80%. Historically, sixteen winters between 1951 and 2015 had created El Niño. Six of those had below-average rainfall, five had average rainfall, and five had above-average rainfall. However, as of May 2015, drought conditions had worsened, and above average ocean temperatures had not resulted in large storms.
The drought led to Governor Jerry Brown's instituting mandatory 25% water restrictions in June 2015.

Many millions of California trees died from the drought - approximately 102 million, including 62 million in 2016 alone. By the end of 2016, 30% of California had emerged from the drought, mainly in the northern half of the state, while 40% of the state remained in the extreme or exceptional drought levels. Heavy rains in January 2017 were expected to have a significant benefit to the state's northern water reserves, despite widespread power outages and erosional damage in the wake of the deluge. Among the casualties of the rain was 1,000-year-old Pioneer Cabin Tree in Calaveras Big Trees State Park, which toppled on January 8, 2017.

The winter of 2016–17 turned out to be the wettest on record in Northern California, surpassing the previous record set in 1982–83. Floodwaters caused severe damage to Oroville Dam in early February, prompting the temporary evacuation of nearly 200,000 people north of Sacramento in response to the heavy precipitation, which flooded multiple rivers and filled most of the state's major reservoirs. Governor Brown declared an official end to the drought on April 7, 2017.

Mitigation: Construct more water storage capacity. Develop ways to capture rainwater from the higher mountains during flash flooding events and divert those waters to the percolation ponds to recharge the underground aquifer.

4.2.6 Windstorm

Probability: Somewhat Likely
Impact: Limited

General Definition: Santa Ana windstorms are common during the fall and winter months in Southern California. Winds are caused by a low-pressure system over the southern coastline and a high pressure over the Great Basin in Nevada. When the high-pressure turns counter clockwise the warm, dry air is pulled to the low-pressure zone and out to the Pacific Ocean. The hot dry air must be funneled through the mountain passes and canyons.

Description: Wind speeds can reach 100 mph during these events. A yearly event occurring during the fall and winter months drives the wildfires in California, causing electrical outages, downed power lines, fallen trees, fires, and risk to life and safety of the residents as well as catastrophic destruction to property as seen during the “Old-Fire” of 2003. The damages from high windstorms are loss of power, downed power lines, and roof damage on a water storage structures. Windstorm issues are a yearly event and downed power lines can cause wildfires.

Mitigation: Projects to help mitigate damage from windstorms are to purchase potable water booster pumps, purchase more generators, and install generator switching panel and equipment at all sites. Replace roof materials that can stand up to high winds and are fire retardant.
4.3 Inventory Assets

This section provides an overview of the assets in the SBMWD and the hazards to which these facilities are susceptible.

4.3.1 Facilities Overview

As of August 2018, the SBMWD operates and maintains the following facilities:

- 23 pressure zones
- 38 existing reservoirs
- 51 existing wells with a total pumping maximum capacity of 2.25 MGD
- Two water treatment/blending facilities
- Approximately 300 miles of distribution and transmission facilities (pipe sizes of 2 inches to 42 inches in diameter).
- 468 miles of sewer collection pipes
- 12 sewer lift stations
- 1 Large Reservoir (Dam)

Figure 7 below illustrates how the facilities are arranged to provide potable drinking water to the residents and businesses of the service area. Water demands in the service area vary throughout the year with sales estimated at 10.5 billion gallons per year. The SBMWD relies entirely on groundwater for their raw water supply. The SBMWD utilizes the State Water Project to recharge the Bunker Hill underground aquifer.
Figure 7
City of San Bernardino Water SBMWD Map
Critical Facilities List

This section provides a table of the SBMWD’s facilities as developed by the Planning Team. This list **is not** in order of most critical to least critical.

Table 8
Critical Facilities

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th & "J" St. Well</td>
<td>Well</td>
</tr>
<tr>
<td>17th Street Plant</td>
<td>108,000 gal reservoir, 3 wells; 2 boosters</td>
</tr>
<tr>
<td>19th Street Plant</td>
<td>258,000 gal reservoir; 2 wells; 4 boosters</td>
</tr>
<tr>
<td>27th & Acacia Plant</td>
<td>247,000 gal concrete reservoir; well; booster</td>
</tr>
<tr>
<td>30th & Mt. View Plant</td>
<td>Well</td>
</tr>
<tr>
<td>Administrative Offices</td>
<td>Building</td>
</tr>
<tr>
<td>Cajon Canyon Well & Vincent Well</td>
<td>Wells and buildings</td>
</tr>
<tr>
<td>Collections/Customer Services Building</td>
<td>Building</td>
</tr>
<tr>
<td>Daley Canyon Reservoir</td>
<td>1.5M gal concrete underground reservoir</td>
</tr>
<tr>
<td>Del Rosa #1 Plant</td>
<td>460,000 gal steel aboveground reservoir; 2 boosters</td>
</tr>
<tr>
<td>Del Rosa #2 Plant</td>
<td>190,000 gal steel reservoir; 2 boosters</td>
</tr>
<tr>
<td>Del Rosa #3 Reservoir</td>
<td>3M gal steel aboveground reservoir</td>
</tr>
<tr>
<td>Del Rosa Booster Station</td>
<td>3 boosters</td>
</tr>
<tr>
<td>Devils Canyon Well 2</td>
<td>Well</td>
</tr>
<tr>
<td>Devils Canyon Wells 1, 6, 7; Domestic Reservoir, and Devil Canyon Plant with 2 boosters</td>
<td>Well; 3 boosters, 10,000 gal steel aboveground reservoir; 220,000 gal concrete underground reservoir, and 2 boosters</td>
</tr>
<tr>
<td>Devore Plant</td>
<td>2M gal steel reservoir, well</td>
</tr>
<tr>
<td>Electric Drive Plant Reservoir</td>
<td>8M gal concrete reservoir; 3 boosters</td>
</tr>
<tr>
<td>EPA Well 1 - 112</td>
<td>12 wells (1,2,3,4,5,6,7,108,109,110,111,112)</td>
</tr>
<tr>
<td>Foothill Booster Station</td>
<td>Booster and well</td>
</tr>
<tr>
<td>Kenwood Wells 1 & 2</td>
<td>Well</td>
</tr>
<tr>
<td>Lynwood Plant</td>
<td>223,000 gal reservoir, well, 2 boosters</td>
</tr>
<tr>
<td>Site Name</td>
<td>Details</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Lytle Creek Boosters</td>
<td>2 boosters</td>
</tr>
<tr>
<td>Lytle Creek Well</td>
<td>Well</td>
</tr>
<tr>
<td>Magnolia Booster Station</td>
<td>Meyers Boosters 3, 4, 5 and 6</td>
</tr>
<tr>
<td>Medical Center Plant; now Cocke Reservoir</td>
<td>12M gal concrete reservoir; well</td>
</tr>
<tr>
<td>Melvin Booster Station</td>
<td>Well; booster</td>
</tr>
<tr>
<td>Meyers Canyon Reservoir</td>
<td>2M gal concrete underground reservoir</td>
</tr>
<tr>
<td>Mill & "D" St. Plant</td>
<td>437,000 gal reservoir; well; 2 boosters</td>
</tr>
<tr>
<td>Mountain Plant</td>
<td>240,000 gal reservoir and 2M gal reservoir</td>
</tr>
<tr>
<td>Mt. Vernon Well</td>
<td>Well</td>
</tr>
<tr>
<td>Newmark Plant</td>
<td>7.5M gal water reservoir w/ pumps; 5.5M gal water reservoir, pump and generator; 8.9M gal water reservoir and booster</td>
</tr>
<tr>
<td>Ogden Plant</td>
<td>12M gal reservoir; 16,000 gal reservoir; booster</td>
</tr>
<tr>
<td>Olive & Garner St. Well</td>
<td>Well</td>
</tr>
<tr>
<td>Palm & Kendall Plant and Palm Booster Station</td>
<td>4M gal steel reservoir; 5M gal steel reservoir; 4 boosters; 2 hydro generators</td>
</tr>
<tr>
<td>Perris Hill Reservoir Dam</td>
<td>10M gal concrete aboveground reservoir (classified as a dam)</td>
</tr>
<tr>
<td>Quail Canyon Plant</td>
<td>400,000 gal steel aboveground reservoir</td>
</tr>
<tr>
<td>Ridgeline Plant & Ridgeline Booster Stations</td>
<td>100,000 gal steel aboveground reservoir; 2 boosters</td>
</tr>
<tr>
<td>Ridgeview Reservoir</td>
<td>330,000 gal steel aboveground reservoir; booster</td>
</tr>
<tr>
<td>Shandin Hills Booster Station</td>
<td>2 boosters</td>
</tr>
<tr>
<td>Shandin Hills Reservoir</td>
<td>219,000 gal concrete underground reservoir</td>
</tr>
<tr>
<td>Sycamore #1 Reservoir</td>
<td>2.5M gal steel aboveground reservoir; 3 boosters</td>
</tr>
<tr>
<td>Sycamore Plant 2 and 3</td>
<td>448,000 gal reservoir; 5M gal reservoir; well</td>
</tr>
<tr>
<td>Terrace Plant 2 and 3</td>
<td>1.1M gal reservoir; 1.2M gal reservoir</td>
</tr>
<tr>
<td>Water Reclamation Offices and Control Operations</td>
<td>Building</td>
</tr>
<tr>
<td>Water Reclamation Plant</td>
<td>Sewage treatment plant</td>
</tr>
<tr>
<td>Water Utility and Maintenance Yards</td>
<td>Offices, Warehouse, Garage & Shops</td>
</tr>
<tr>
<td>Waterman Plant</td>
<td>10M gal concrete underground reservoir; 2 wells; 4 boosters; 14 GAC vessels; 2 air striping towers</td>
</tr>
</tbody>
</table>
4.4 Vulnerability Assessment

The team reviewed pictures of each of the SBMWD’s facilities. The pictures were presented with a map of the area to convey the location within the system as well as the site-specific characteristics of the facility. The Planning Team has a long history in the area and knowledge of the potential disasters and emergencies that can occur in and around the community. The Planning Team has the knowledge to assess the system and give valuable input into the assessment and vulnerabilities to the system.

4.4.1 Methodology

The Planning Team reviewed the SBMWD’s facilities and applied their local and operational knowledge to evaluate how vulnerable each facility is to a potential hazard. The team ranked the facilities by their importance to the SBMWD’s production and delivery of drinking water, and then using this ranking the team developed an estimate of potential economic impacts that could be caused by the high priority hazards. A percentage based on ranking was applied to the SBMWD’s projected 2017-2018 annual water revenue ($7.8 million) to obtain the annual economic impact for each facility.

4.4.2 Earthquake Vulnerability Analysis

Population: Approximately 100% of SBMWD’s population is vulnerable.

Critical Facilities: Approximately 100% of SBMWD’s critical facilities are vulnerable.

All facilities are vulnerable in the event of a major earthquake within the SBMWD’s boundaries. There are many nearby faults that could affect the SBMWD’s facilities. They are Loma Linda, Middle Fork, Cleghorn, Arrowhead, Mill Creek, Grass Valley, Crafton Glen Helen, Big Bear, mighty San Andreas Fault and the San Jacinto. If any of these faults experience a rupture of 6.5 magnitude or more, it could have a negative effect on the SBMWD’s facilities and pipelines.

Estimated Losses: The economic loss resulting from this hazard is approximately $5 billion. The loss from damage to structures and pipelines from this hazard is approximately $6.5 billion.

Losses are estimated assuming:

1. Lost revenue from water sales for 12 months based on the 2017-2018 projected City of San Bernardino Municipal Water Department (SBMWD) revenue
2. All the SBMWD’s critical facilities are at risk, including 80% of the SBMWD’s pipelines
3. Without the critical facilities, no revenue can be generated for the SBMWD

4.4.3 Flooding Vulnerability Analysis

Population: Approximately 40% of the SBMWD’s population is vulnerable.
Critical Facilities: Approximately 40% of the SBMWD’s critical facilities are vulnerable.

Flash flooding only happens when heavy and concentrated rains occur in steep basin areas where runoff is channeled through limited areas. The SBMWD is located in the foothills where water runs off from higher mountainous areas on its way to the dry lake areas on the desert floor. These waters are very dangerous because they can originate many miles away and travel at fast speeds. Flash flood waters rage through the service area from the west to east and collect in the wash area.

The SBMWD is not a member of the National Flood Insurance Program (NFIP). There is a dry river bed known as the Santa Ana River that runs through the southern section of the City and the SBMWD’s service area. The Santa Ana River has caused massive flooding in the past. The SBMWD has infrastructure in the Lytle Creek area, as well. This creek has also caused massive flooding in the past.

Estimated Losses: The economic loss resulting from this hazard is approximately $4 million. The loss from damage to structures from this hazard is approximately $3 million.

4.4.4 Wildfire Vulnerability Analysis

Population: Approximately 50% of the SBMWD’s population is vulnerable.

Critical Facilities: Approximately 60% of the SBMWD’s critical facilities are vulnerable.

Wildfires are a concern in California. California residents have seen the most devastating fire year in history, with millions of acres of land burned and hundreds of homes destroyed. The last major firestorm that affected the San Bernardino area was the Old Fire in 2003. This fire destroyed hundreds of homes within the City limits and caused major damage to the water system infrastructure.

Estimated Losses: The economic loss resulting from this hazard is approximately $10 million. The loss from damage to structures from this hazard is approximately $8 million.

4.4.5 Terrorist Event Vulnerability Analysis

Population: 100% of the SBMWD’s critical facilities are vulnerable.

Critical Facilities: The City of San Bernardino has experienced two terrorist events in the recent past. The latest one was on April 10, 2017, at North Park Elementary School. The second was on December 2, 2015, were 14 people were killed and 22 people were injured. The SBMWD keeps security of its buildings and infrastructure in the forefront and has many security measures in place at all facilities. However, terrorist events could happen at any time. There have been other events in the city; however, this is a public document and past events will not be discussed in this document. Normally, terrorists are looking at making the biggest impact to the public. The types of events that can happen will not be discussed in this document, as this information is confidential to the SBMWD and will not be shared in a public forum.
Estimated Losses: The economic loss resulting from this hazard is approximately $52 million. The loss from damage to structures from this hazard is approximately $3 million.

4.4.6 Climate Change/Drought Vulnerability Analysis

Climate Change

Population: 100% of the SBMWD’s population is vulnerable to climate change.

Critical Facilities: The groundwater aquifer is the most vulnerable component of the SBMWD’s critical facilities (or resources). Without the aquifer, there is no water supply.

Climate change is an immediately sensitive issue in coastal communities, with increasing ocean waters, sea surges, tidal issues, and surging waves. Northern California and, in turn, the Central Valley are being affected by recent changes in weather patterns. In the inland desert regions of California, climate change is a long-term concern. As the weather becomes hotter and dryer in a changing climate, water will need to be captured during the rainy periods to recharge the underground aquifers, outdoor watering will be restricted, and other conservation measures will be needed.

As climate change results in more extreme weather patterns, the SBMWD will need to become more resilient in the management of groundwater resources. Planning for lower groundwater tables may include monitoring and studying the aquifer in greater detail, as well as installing deeper water supply wells. Enhanced groundwater recharge opportunities should also be explored and implemented.

Estimated Losses: The economic loss resulting from this hazard is approximately $5 million. The loss from damage to structures from this hazard is approximately $6.5 million.

Long Term Drought

Population: Approximately 100% of the SBMWD’s population is vulnerable.

Critical Facilities: Approximately 100% of SBMWD’s critical facilities are vulnerable.

The specific critical facilities vulnerable in the SBMWD are:

The wells are critical to drought because they supply groundwater for the SBMWD. During a long-term drought, the groundwater levels decline. During the current drought, the decrease in water level has not been significant, although pumping costs increased due to the greater lift required. It is also possible that wells and pumps may be too shallow if the groundwater level drops significantly. In this instance, the pump shaft and bowls may need to be lowered deeper into the well. In extreme cases a new and deeper well may be required.

Of the critical facilities listed, 51 are wells. Currently, all of these wells were operating without significant hardship during the recent drought. Reservoirs are not considered critical in a drought; however, pipelines can collapse if the system is left with no water.
California Governor Jerry Brown declared a Water State of Emergency for the entire state, mandating water conservation by all residents and reduction of water consumption by 25% in 2015.

The SBMWD adopted Stage IIA water conservation regulations due to the drought conditions that were required by the State Water Resources in 2015. The conservation regulations were lifted in 2017, and the SBMWD lifted the restrictions in January of 2018.

Estimated Losses: The economic loss resulting from this hazard is approximately $60,000 a month.

4.4.7 Windstorm Vulnerability Analysis

Population: Approximately 75% of SBMWD’s population is vulnerable.

Critical Facilities: Approximately 100% of SBMWD’s critical facilities are vulnerable.

All facilities are vulnerable in the event of a Santa Ana wind event within the SBMWD’s boundaries. These events blow roofs off reservoirs, down power lines, and cause long-term power outages. When a potable water utility loses power during a long-term power outage and cannot maintain a system pressure of 25 psi, the water in the system is no longer potable. Wind can affect the entire service area. In 2017 wind took the roof off a reservoir in the north part of the service area.

Estimated Losses: The economic loss resulting from this hazard is approximately $5 million. The loss from damage to structures from this hazard is approximately $6.5 million.

4.4.8 Potential Loss Estimation

Replacement costs listed in this section were arrived by utilizing the SBMWD’s insurance documentation. The Joint Powers Insurance Authority (JPIA) has listed the replacement cost value for each facility. The team has communicated with the JPIA on the values listed below and was assured that the estimated costs are accurate. Table 9 summarizes the economic impacts on the critical facilities within the SBMWD.
Table 9
Economic Impacts on Critical Facilities

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Economic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th & "J" St. Well</td>
<td>$150,000</td>
</tr>
<tr>
<td>17th Street Plant</td>
<td>$200,000</td>
</tr>
<tr>
<td>19th Street Plant</td>
<td>$575,000</td>
</tr>
<tr>
<td>27th & Acacia Plant</td>
<td>$200,000</td>
</tr>
<tr>
<td>30th & Mt. View Plant</td>
<td>$150,000</td>
</tr>
<tr>
<td>Administrative Offices</td>
<td>$3.5 million</td>
</tr>
<tr>
<td>Cajon Canyon Well & Vincent Well</td>
<td>$400,000</td>
</tr>
<tr>
<td>Collections/Customer Services Building</td>
<td>$1.1 million</td>
</tr>
<tr>
<td>Daley Canyon Reservoir</td>
<td>$4.5 million</td>
</tr>
<tr>
<td>Del Rosa #1 Plant</td>
<td>$575,000</td>
</tr>
<tr>
<td>Del Rosa #2 Plant</td>
<td>$175,000</td>
</tr>
<tr>
<td>Del Rosa #3 Reservoir</td>
<td>$6.0 million</td>
</tr>
<tr>
<td>Del Rosa Booster Station</td>
<td>$175,000</td>
</tr>
<tr>
<td>Devils Canyon Well 2</td>
<td>$150,000</td>
</tr>
<tr>
<td>Devils Canyon Wells 1, 6, 7; Domestic Reservoir, and Devil Canyon Plant with 2 boosters</td>
<td>$5.0 million</td>
</tr>
<tr>
<td>Devore Plant</td>
<td>$3.0 million</td>
</tr>
<tr>
<td>Electric Drive Plant Reservoir</td>
<td>$8.0 million</td>
</tr>
<tr>
<td>EPA Well 1 - 112</td>
<td>$1.8 million</td>
</tr>
<tr>
<td>Foothill Booster Station</td>
<td>$175,000</td>
</tr>
<tr>
<td>Kenwood Wells 1 & 2</td>
<td>$150,000</td>
</tr>
<tr>
<td>Lynwood Plant</td>
<td>$350,000</td>
</tr>
<tr>
<td>Lytle Creek Boosters</td>
<td>$135,000</td>
</tr>
<tr>
<td>Lytle Creek Well</td>
<td>$150,000</td>
</tr>
<tr>
<td>Magnolia Booster Station</td>
<td>$375,000</td>
</tr>
<tr>
<td>Medical Center Plant; now Cocke Reservoir</td>
<td>$12.0 million</td>
</tr>
<tr>
<td>Project Description</td>
<td>Cost</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Melvin Booster Station</td>
<td>$170,000</td>
</tr>
<tr>
<td>Meyers Canyon Reservoir</td>
<td>$3.5 million</td>
</tr>
<tr>
<td>Mill & "D" St. Plant</td>
<td>$4.5 million</td>
</tr>
<tr>
<td>Mountain Plant</td>
<td>$5.2 million</td>
</tr>
<tr>
<td>Mt. Vernon Well</td>
<td>$125,000</td>
</tr>
<tr>
<td>Newmark Plant</td>
<td>$15.0 million</td>
</tr>
<tr>
<td>Ogden Plant</td>
<td>$12.0 million</td>
</tr>
<tr>
<td>Olive & Garner St. Well</td>
<td>$125,000</td>
</tr>
<tr>
<td>Palm & Kendall Plant and Palm Booster Station</td>
<td>$12.0 million</td>
</tr>
<tr>
<td>Perris Hill Reservoir Dam</td>
<td>$11.8 million</td>
</tr>
<tr>
<td>Quail Canyon Plant</td>
<td>$4.2 million</td>
</tr>
<tr>
<td>Ridgeline Plant & Ridgeline Booster Stations</td>
<td>$1.1 million</td>
</tr>
<tr>
<td>Ridgeview Reservoir</td>
<td>$3.1 million</td>
</tr>
<tr>
<td>Shandin Hills Booster Station</td>
<td>$175,000</td>
</tr>
<tr>
<td>Shandin Hills Reservoir</td>
<td>$1.1 million</td>
</tr>
<tr>
<td>Sycamore #1 Reservoir</td>
<td>$4.4 million</td>
</tr>
<tr>
<td>Sycamore Plant 2 and 3</td>
<td>$1.1 million</td>
</tr>
<tr>
<td>Terrace Plant 2 and 3</td>
<td>$6.0 million</td>
</tr>
<tr>
<td>Water Reclamation Offices and Control Operations</td>
<td>$4.4 million</td>
</tr>
<tr>
<td>Water Reclamation Plant</td>
<td>$8 billion</td>
</tr>
<tr>
<td>Water Utility and Maintenance Yards</td>
<td>$20 million</td>
</tr>
<tr>
<td>Waterman Plant</td>
<td>$10 million</td>
</tr>
</tbody>
</table>
SECTION 5: COMMUNITY CAPABILITY ASSESSMENT

5.1 Agencies and People

The City of San Bernardino Municipal Water SBMWD provides water service to approximately 44,000 active service connections within its 55 square-mile service area in the City of San Bernardino and surrounding areas within the County of San Bernardino.

To help mitigate the potential impacts of disasters, the SBMWD joined the Emergency Response Network of the Inland Empire (ERNIE). This organization consists of water agencies within San Bernardino and Riverside counties. The ERNIE group of agencies coordinates mutual aid to help each member respond and recover from local emergency issues. The SBMWD is also a member of the California Water/Wastewater Response Network (CalWARN). CalWARN focuses on mutual aid throughout the State of California. The SBMWD staff attends quarterly meetings with the ERNIE group and also attends the twice-yearly CalWARN and Arizona WARN meetings at the American Water Works Association conferences.

The SBMWD employs 239 people. With the capabilities of ERNIE and CalWARN, the SBMWD has the potential of having hundreds of mutual aid workers at its disposal within hours of an emergency.

5.2 Existing Plans

The following emergency related plans apply, as appropriate:

- CalWARN Emergency Operations Plan
- SBMWD's Illness Injury Prevention Plan (IIPP)
- SBMWD's Water Master Plan
- Emergency Management Assistance Compact (EMAC)
- Dam No. 17.006 Inundation Report

In addition, the SBMWD has mutual aid agreements with San Bernardino, Riverside Counties and the State of California. As a Department within the City of San Bernardino, the SBMWD has the resources of the City. As a government entity SBMWD can access the Emergency Managers Mutual Aid (EMMA) and the Emergency Management Assistance Compact (EMAC) for national mutual aid and the National WARN System though the American Water Works Association (AWWA). SBMWD staff attends the San Bernardino County Office of Emergency Services quarterly meetings at various locations within the County of San Bernardino.

5.3 Regulations, Codes, Policies, and Ordinances

The Urban Water Management and Planning Act was passed in 2010 and requires water suppliers to estimate water demands and available water supplies. The SBMWD’s updated Urban Water Management Plan (UWMP) was completed in January 2015. UWMPs are required to evaluate the adequacy of water supplies including projections of 5, 10, and 20 years. These
plans are also required to include water shortage contingency planning for dealing with water shortages, including a catastrophic supply interruption.

UWMPs are intended to be integrated with other urban planning requirements and management plans. Some of these plans include city and county General Plans, Water Master Plans, Recycled Water Master Plans, Integrated Resource Plans, Integrated Regional Water Management Plans, Groundwater Management Plans, Emergency Response Plans, and others. The SBMWD participates with other local area water agencies in preparing Water Master Plans that benefit all of the regional water agencies.

The SBMWD has an Emergency Response Plan that details how the SBMWD will respond to various emergencies and disasters. The SBMWD must be prepared to respond to a variety of threats that require emergency actions, including:

- Operational incidents, such as power failure or bacteriological contamination of water
- Outside or inside malevolent acts, such as threatened or intentional contamination of water, intentional damage/destruction of facilities, detection of an intruder or intruder alarm, bomb threat, or suspicious mail
- Natural disasters, such as earthquakes or floods
- Water conservation regulations

The SBMWD is also required to follow Standard Emergency Management System (SEMS), the National Incident Management System (NIMS) and the Incident Command System (ICS) protocol when responding to emergencies.

5.4 Mitigation Programs

The SBMWD has an ongoing program to seismic retrofit reservoirs and adopt best engineering practices to ensure new infrastructure is built to withstand natural disasters. The SBMWD budgets for safety and seismic retro-fits in its annual Capital Improvement Plan (CIP). The SBMWD is always looking for mitigation ideas and new techniques and attends workshops conducted by the County of San Bernardino OES, the American Water Works Association, vendor fairs, and meetings with other water organizations.

5.5 Fiscal Resources

Fiscal resources for the SBMWD include the following:

- Revenue from water sales
- Monthly Service Charge fees
- Water Availability Assessment (on Property Taxes)
- Meter Installation fees
- New Construction fees
- Local bond measures and property taxes
- Meter Stand-by fees
- Wastewater fees
Land and site leases

Through the California Department of Water Resources, local grants and loans are available for water conservation, groundwater management, studies and activities to enhance local water supply quality, and reliability. Project eligibility depends on the type of organization applying and participating in the project, and the specific type of project. More than one grant or loan may be appropriate for a proposed activity. Completing the LHMP will facilitate obtaining grant funding in the future.
SECTION 6: MITIGATION STRATEGIES

6.1 Overview
The purpose of this analysis is to identify projects (actions) that help the SBMWD meet the goals and objectives for each priority hazard. The SBMWD has identified hazards in the community, assessed those hazards that pose the most significant risk, and identified projects to help reduce and/or eliminate those risks.

6.2 Mitigation Goals and Objectives
As discussed in Section 3.5 Hazard Assessment, the process of identifying goals began with a review and validation of the goals and objectives in the SBMWD and the San Bernardino County’s 2015 Operational Area LHMP. Using the County’s 2015 LHMP, the SBMWD’s Planning Team completed an assessment of whether each of the goals was valid.

Overall, the primary goal is to protect lives and prevent damages to infrastructure that disrupts water and wastewater services. Global measures that apply across all hazards include:

- Continually improve the community’s understanding of potential impacts due to hazards and the measures needed to protect lives and critical infrastructure
- Provide public outreach to inform the hazards associated with the drinking water system in emergencies: How to conserve water in the event of a disaster and how to obtain drinking water when water may not be available
- Continually provide State and local agencies with updated information about hazards, vulnerabilities, and mitigation measures
- Review local codes and standards to verify that they protect human life and SBMWD’s facilities
- Review and verify that SBMWD’s owned and operated infrastructure meet minimum standards for safety
- Review SBMWD facilities and development in high-risk areas to verify that these areas are appropriately protected for potential hazards
- Identify and mitigate imminent threats to life safety and facility damage

The six high profile hazards for the SBMWD are earthquake, flooding, wildfire, terrorist event, climate change/drought, and windstorm. SBMWD’s priority and focus for the mitigation projects will be the six high profile hazards.
6.2.1 Earthquake, Impact Rating (Catastrophic)

Description: The SBMWD agrees that strengthening of buildings and fire codes are critical to the protection of property, life, and the reduction of seismic-caused damages. These codes and American Water Works Standards help water and wastewater utilities design and construct reservoirs, pump stations, groundwater wells, lift stations, treatments facilities, and pipelines to resist the forces of nature.

Objectives:

- Design new facilities and upgrade existing facilities to withstand an 8.0 earthquake
- Encourage property protection measures for structures located in the area
- Adopt cost-effective codes and standards to protect life, properties, and critical infrastructure
- Establish partnerships with other levels of government and the business community to improve and implement methods to protect property

Mitigation Projects:

- Install flexible pipe joints at wellheads, pump stations, and reservoirs
- Install seismic shut-off valves
- Bolt down reservoirs
- Tie down equipment
- Purchase and install generators and generator hook-ups
- Install additional booster pumps

6.2.2 Flooding, Flash Flooding Impact Rating (Catastrophic)

Description: A sudden, localized flood of great volume and short duration, typically caused by unusually heavy rain in a semiarid area. Flash flood can reach its peak volume in a matter of a few minutes and often carry large loads of mud and rock fragments. Flash flooding is common in the arid desert areas of California, Arizona, Nevada, and New Mexico.

Objectives:

- Prevent damage to water distribution and wastewater facilities
- Protect critical facilities
- Mitigate cost of damages during and after a flood
- Protect the wastewater treatment plant
Mitigation Projects:

- Install block or concrete diversion walls
- Flood proof facilities that are in the flood plain
- Raise well motors
- Install concrete protection of pipelines in washes, creeks, and rivers
- Protect pipelines running across bridges
- Purchase generators and generator hook-ups
- Purchase portable booster pumps

6.2.3 **Wildfire, Impact Rating (Catastrophic)**

Description: The SBMWD agrees that strengthening of buildings and fire codes are critical to the protection of property, life, and the reduction of seismic-caused damages. These codes help water utilities design and construct reservoirs, pump stations, groundwater wells, and pipelines to resist the forces of nature.

Objectives:

- Design new facilities and upgrade existing facilities to withstand wildfires
- Encourage property protection measures for structures located in the area
- Adopt cost-effective codes and standards to protect life properties and critical infrastructure
- Establish partnerships with other levels of government and the business community to improve and implement methods to protect property

Mitigation Projects:

- Purchase more portable generators
- Keep brush and trees clear from facilities
- Improve communication with local fire, police, and San Bernardino County OES
- Purchase water booster pumps
- Purchase additional stationary generators and generator hook-ups
- Redundant SCADA and communications equipment

6.2.4 **Terrorist Event, Impact Rating (Critical)**

Description: A person or group of persons willingly causes damage to people or property to forward their goals through intimidation or coercion of a civilian population, to influence the policy of a government either large or small, and to affect a government entity.

Objectives:

- Prevent damage to critical water facilities
- Educate the public on terrorism and measures to prevent events
• Enhance safety within the region
• Increase security measures at critical facilities, which may include patrols

Mitigation Projects:

• Train the public in “if you see something, say something.”
• Improved SCADA controls
• Install and improve video cameras at critical facilities
• Build block walls around critical facilities for additional security
• Purchase generators and generator hook-ups

6.2.5 Climate Change/Drought, Impact Rating (Limited)

Description: Due to Global Warming, there are more extremes in the weather, which means the summers can be hotter, the winters colder, periods of rain can become less wet or more wet, causing flooding. Objectives and mitigation address expected greater fluctuations in weather patterns, including prolonged dry periods and drought, through mitigation over the long-term. The objectives listed below have been taken from the declaration of a Drought, State of Emergency for California, signed by Governor Jerry Brown in May of 2015. The past California Drought has not affected the operation of SBMWD instituted mandatory water conservation. SBMWD is also in the final planning stage of treatment for more wastewater to recharge the aquifer in the future.

Objectives:

• Increase water supply by creating innovative ways to generate new supplies
• Recycle water to recharge the Bunker Hill Groundwater Basin
• Improve operational efficiency
• Reduce water demand through water conservation, a viable long-term supply savings
• Encourage reduction of landscaping that requires heavy watering

Mitigation Projects:

• Increase public awareness of water conservation
• Monitor groundwater elevations and evaluate trends
• Increase water pumping capabilities
• Increase groundwater supplies
• Study system interties with other water systems in the area
• Purchase generators and generator hook-ups
6.2.6 Windstorms, Impact Rating (Limited)

Description: The SBMWD’s biggest concern is the loss of power during a windstorm. The other concern is threat of wildfires driven by a windstorm. Windstorms cause loss of power, uproot trees, blow roofs off reservoirs, and cause SCADA controls to be damaged. Windstorms can be severe in San Bernardino, as the Santa Ana winds are a yearly occurrence.

Objectives:

- Design new facilities and upgrade existing facilities to withstand high winds
- Encourage property protection measures for structures located in the area
- Harden facilities to resist wind damage
- Establish partnerships with other levels of government and the business community to improve and implement methods to protect life and property.

Mitigation Projects:

- Install redundant SCADA controls
- Purchase generators and generator hook-ups
- Purchase water booster pumps
- Replace roofs with wind resistant material
- Remove trees and brush from around facilities
6.2.7 Mitigation at Critical Sites

Mitigation measures, estimated budget timelines are listed in Table 10 below.

Table 10

Mitigation Measures

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Mitigation/Objective</th>
<th>Timeline (Approx.)</th>
<th>Budget</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th & "J" St. Well</td>
<td>Seismic retrofit, flex lines, auto sprinkler system</td>
<td>1-2 years</td>
<td>$150,000</td>
<td>E, F</td>
</tr>
<tr>
<td>17th Street Plant</td>
<td>Seismic retrofit, flex lines, auto sprinkler system</td>
<td>1-2 years</td>
<td>$150,000</td>
<td>E, F</td>
</tr>
<tr>
<td>19th Street Plant</td>
<td>Seismic retrofit, flex lines, auto sprinkler system</td>
<td>1-3 years</td>
<td>$700,000</td>
<td>E, F</td>
</tr>
<tr>
<td>27th & Acacia Plant</td>
<td>Seismic retrofit buildings</td>
<td>1-3 years</td>
<td>$500,000</td>
<td>E</td>
</tr>
<tr>
<td>30th & Mt. View Plant</td>
<td>Seismic retrofit, flex lines, auto sprinkler system</td>
<td>1-2 years</td>
<td>$150,000</td>
<td>E, F</td>
</tr>
<tr>
<td>Administrative Offices</td>
<td>Security, earthquake retro fit</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>T, E</td>
</tr>
<tr>
<td>Cajon Canyon Well & Vincent Well</td>
<td>Seismic retrofit, flex lines, auto sprinkler system, Block wall</td>
<td>1-2 years</td>
<td>$1 million</td>
<td>A</td>
</tr>
<tr>
<td>Collections/Customer Services Building</td>
<td>Security, earthquake retro fit</td>
<td>1-3 years</td>
<td>$500,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Daley Canyon Reservoir</td>
<td>Underground seismic retrofit, flex piping, security and generator, Solar</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>T, E</td>
</tr>
<tr>
<td>Del Rosa #1 Plant</td>
<td>Seismic retrofit, flex lines, remove trees from around the facility</td>
<td>1-3 years</td>
<td>$800,000</td>
<td>F, E</td>
</tr>
<tr>
<td>Del Rosa #2 Plant</td>
<td>Seismic retrofit, flex lines, auto sprinkler system</td>
<td>1-3 years</td>
<td>$500,000</td>
<td>E, F</td>
</tr>
<tr>
<td>Del Rosa #3 Reservoir</td>
<td>Power, Security, seismic retrofit</td>
<td>1-3 years</td>
<td>$800,000</td>
<td>E, F</td>
</tr>
<tr>
<td>Del Rosa Booster Station</td>
<td>Metal roof, security and block wall</td>
<td>1-3 years</td>
<td>$300,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Devils Canyon Well 2</td>
<td>Metal roof, seismic retrofit building</td>
<td>1-3 years</td>
<td>$50,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Devils Canyon Wells 1, 6, 7; Domestic Reservoir, and Devil Canyon Plant with 2 boosters</td>
<td>Security, diversion walls, metal roof, seismic retrofit reservoirs, solar power</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>A</td>
</tr>
<tr>
<td>Devore Plant</td>
<td>Flex lines, seismic retrofit</td>
<td>1-2 years</td>
<td>$800,000</td>
<td>E</td>
</tr>
<tr>
<td>Electric Drive Plant Reservoir</td>
<td>Seismic retrofit, flex couplings, power, security</td>
<td>1-3 years</td>
<td>$1.1 million</td>
<td>A</td>
</tr>
<tr>
<td>EPA Well 1 - 112</td>
<td>Seismic retrofit buildings, flex piping</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>E</td>
</tr>
<tr>
<td>Foothill Booster Station</td>
<td>Seismic retrofit, security, lighting</td>
<td>1-3 years</td>
<td>$35,000</td>
<td>E</td>
</tr>
<tr>
<td>Kenwood Wells 1 & 2</td>
<td>Seismic retrofit buildings, flex piping</td>
<td>1-3 years</td>
<td>$35,000</td>
<td>E</td>
</tr>
<tr>
<td>Lyndwood Plant</td>
<td>Seismic retrofit buildings, flex piping</td>
<td>1-3 years</td>
<td>$100,000</td>
<td>E</td>
</tr>
<tr>
<td>Lytle Creek Boosters</td>
<td>Seismic retrofit</td>
<td>1-3 years</td>
<td>$75,000</td>
<td>E</td>
</tr>
<tr>
<td>Lytle Creek Well</td>
<td>Replace reservoir to include all seismic</td>
<td>1-3 years</td>
<td>$35,000</td>
<td>A</td>
</tr>
<tr>
<td>Facility Name</td>
<td>Description</td>
<td>Timeframe</td>
<td>Cost</td>
<td>Location</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Magnolia Booster Station</td>
<td>Seismic retrofit</td>
<td>1-3 years</td>
<td>$65,000</td>
<td>E</td>
</tr>
<tr>
<td>Medical Center Plant; now Cocke Reservoir</td>
<td>Flex couplings, seismic retrofits, security, block walls</td>
<td>1-3 years</td>
<td>$1.5 million</td>
<td>A</td>
</tr>
<tr>
<td>Melvin Booster Station</td>
<td>Seismic retrofit, security, lighting</td>
<td>1-3 years</td>
<td>$10,000</td>
<td>A</td>
</tr>
<tr>
<td>Meyers Canyon Reservoir</td>
<td>Seismic retrofit, security, lighting, block wall</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>A</td>
</tr>
<tr>
<td>Mill & "D" St. Plant</td>
<td>Seismic retrofit, security, lighting, block wall</td>
<td>1-3 years</td>
<td>$800,000</td>
<td>A</td>
</tr>
<tr>
<td>Mountain Plant</td>
<td>Replace small reservoir, seismic retrofit, security, lighting cameras, block wall</td>
<td>1-3 years</td>
<td>$1.3 million</td>
<td>A</td>
</tr>
<tr>
<td>Mt. Vernon Well</td>
<td>Seismic retrofit, security, lighting, block wall</td>
<td>1-3 years</td>
<td>$100,000</td>
<td>A</td>
</tr>
<tr>
<td>Newmark Plant</td>
<td>Seismic retrofit of reservoir and stripping towers</td>
<td>1-3 years</td>
<td>$5 million</td>
<td>A</td>
</tr>
<tr>
<td>Ogden Plant</td>
<td>Seismic retrofit, security, lighting, block wall</td>
<td>1-3 years</td>
<td>$1.1 million</td>
<td>A</td>
</tr>
<tr>
<td>Olive & Garner St. Well</td>
<td>Flex couplings</td>
<td>1-3 years</td>
<td>$75,000</td>
<td>E</td>
</tr>
<tr>
<td>Palm & Kendall Plant and Palm Booster Station</td>
<td>Block wall, seismic retrofit</td>
<td>1-3 years</td>
<td>$1.5 million</td>
<td>T, E</td>
</tr>
<tr>
<td>Perris Hill Reservoir Dam</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$3 million</td>
<td>A</td>
</tr>
<tr>
<td>Quail Canyon Plant</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$600,000</td>
<td>A</td>
</tr>
<tr>
<td>Ridgeline Plant & Ridgeline Booster Stations</td>
<td>Seismic retrofit, block wall, security</td>
<td>1-3 years</td>
<td>$300,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Ridgeview Reservoir</td>
<td>Seismic retrofit, flex couplings, power, security, remove trees</td>
<td>1-3 years</td>
<td>$300,000</td>
<td>A</td>
</tr>
<tr>
<td>Shandin Hills Booster Station</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$75,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Shandin Hills Reservoir</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$500,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Sycamore #1 Reservoir</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$800,000</td>
<td>T, E</td>
</tr>
<tr>
<td>Sycamore Plant 2 and 3</td>
<td>Flood diversion walls, block walls, detention basin</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>FL</td>
</tr>
<tr>
<td>Terrace Plant 2 and 3</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>A</td>
</tr>
<tr>
<td>Water Reclamation Offices and Control Operations</td>
<td>Seismic retrofit buildings</td>
<td>1-3 years</td>
<td>$1 million</td>
<td>E</td>
</tr>
<tr>
<td>Water Reclamation Plant</td>
<td>Seismic retrofit buildings, flex piping</td>
<td>1-3 years</td>
<td>$5 million</td>
<td>E</td>
</tr>
<tr>
<td>Water Utility and Maintenance Yards</td>
<td>Seismic retrofit, security, lighting, block wall</td>
<td>1-3 years</td>
<td>$8 million</td>
<td>T, E</td>
</tr>
<tr>
<td>Waterman Plant</td>
<td>Seismic retrofit, security, lighting, block wall, cameras</td>
<td>1-3 years</td>
<td>$3 million</td>
<td>T, E</td>
</tr>
</tbody>
</table>
6.3 Implementation Strategy

The implementation strategy is intended to successfully mitigate the hazards identified in this plan within a reasonable amount of time. SBMWD is currently operating within its annual budget and has been fortunate that the recession of the past 10 years did not cause major issues with the budget or revenue. The SBMWD’s revenues have remained strong throughout the recession. Capital Improvement Projects have remained a priority and the General Manager has included mitigation as a priority and will be responsible for overseeing all mitigation activity. The new LHMP will be included in all engineering project and incorporated into all Capital Improvement projects. The Department has already included mitigation measures for earthquakes into three current reservoir improvement projects, by including bolting down the reservoir and adding seismic shut-off valves.

SBMWD staff will review the Mitigation Plan each year before obtaining the next year’s Fiscal Budget. The plan will also be reviewed by the Water Board for items to be included in the new Fiscal Budget. SBMWD staff will also look for ways to obtain Hazard Mitigation Grants each year to offset the impacts to the Fiscal Budget and to show some relief for the residents of a disadvantaged community. The General Manager and all Department heads will review the HMP yearly. The General Manager or his/her designee and the Engineering Manager and his/her designee are to review the HMP before any site rehabilitation or construction is undertaken in the Departments service boundary. The Department will utilize and consider cost and benefit of each project to be funded by the Department or funded by grants.

Mitigation Projects Funding Source

There is currently no mitigation money in SBMWD’s 2019/2020 budget. SBMWD will include mitigation into the budgeting process when funding becomes available and look at which mitigation projects could be funded in future budget cycles.

Once the LHMP is approved by FEMA; the SBMWD will actively pursue grant funding from FEMA and other sources as they become available.

Timeframe

Over the next five years, the SBMWD will incorporate mitigation into all capital improvement projects, where deemed necessary in the mitigation review phase. The SBMWD has a Capital Improvement Program. When funds are available for the projects, the SBMWD replaces outdated pipelines, reservoirs, wells, buildings, and equipment.

The SBMWD will apply for mitigation grants as the opportunities become available in the State of California, County of San Bernardino and/or through FEMA each year. SBMWD will consider all mitigation items during the annual budget workshops, conducted each spring.
SECTION 7: PLAN MAINTENANCE

7.1 Monitoring, Evaluating, and Updating the Plan

The LHMP will be monitored and evaluated by the General Manager or his/her designee. Progress will be reported as part of the annual budget workshop in the spring of each year. Annually, the General Manager or his/her designee and the Water Board will review funding and determine the Capital Improvement Projects to be included in the next fiscal year’s budget.

The General Manager or his/her designee will include the LHMP in all budget workshops and grant planning meetings. This will allow open discussion, evaluation, and assessment of the plan at achieving goals, and allow for the addition and/or removal of mitigated items.

A full review of the plan will be performed at 4-year intervals by the General Manager or his/her designee. All FEMA and State guidelines will be followed in any update of the LHMP. Progress in reaching mitigation goals, assessment of new and existing hazards, development of new mitigation strategies, and goals will be tackled by a planning team that will include SBMWD staff and the community served by the SBMWD. The public will be asked to participate in the update process. The SBMWD’s budget is a public document and is reviewed by the public before the Water Board adopts the updated LMHP.

It is the responsibility of the General Manager or his/her designee to review the LHMP each year to remove projects form the LHMP that have completed mitigation measures. This will give the Department a better understanding of how well the LHMP is being utilized in the future.

The General Manager or his/her assignee will review the plan yearly to update and log all completed mitigation projects in the water department. This list will be utilized every 5 years in order to help update the HMP.

7.2 Implementation through Existing Programs

Once the State of California OES and FEMA approve the LHMP, SBMWD will incorporate the LHMP into Capital Improvement Projects, Capital Replacement Programs, building design, and any updates or repairs to the water distribution system. The SBMWD will submit Notice of Intents to the State of California to help facilitate funding opportunities in obtaining FEMA and State funding to mitigate hazards within the service area.

SBMWD’s General Manager or his/her appointee will be responsible for the review, implementation, revisions and budgeting of the LHMP. The General Manager and his/her appointee will also be responsible for ensuring the LHMP recommended goals and objectives are met. SBMWD will start the update process three and a half years before the expiration date on this document. The LHMP will be included in the Departments Water Master Plan, the Capital Improvement Plan and as a part of all budget planning and review. The LHMP will also, be included in the yearly budget workshops.
7.3 Continued Public Involvement

The approved LHMP will be posted on SBMWD’s website with contact information provided for questions or concerns. In the spring of each year at the SBMWD’s Water Board budget workshop, public comments will be taken in regard to the LHMP and projects will be considered that could possibly be included in the next year’s budgeting process. As new facilities are incorporated into the SBMWD, the LHMP will be updated to include new facilities, as well as new hazards, if warranted. When the LHMP is rewritten and updated, a public committee will be utilized to review and concur on the changes in the document.
Attachment 3: Adoption Resolution
RESOLUTION NO. 2021-007

RESOLUTION OF THE WATER BOARD OF THE CITY OF SAN BERNARDINO, CALIFORNIA, ADOPTING THE WATER SHORTAGE CONTINGENCY PLAN

WHEREAS, in accordance with Section 603 of the City Charter, the Water Board is responsible for oversight and management of the City’s water supply, recycled water, wastewater collection and treatment functions; and

WHEREAS, the California Urban Water Management Planning Act, Water Code Section 10610 et seq. (the UWMP Act), mandates that every urban supplier of water providing water for municipal purposes to more than 3,000 customers or supplying more than 3,000-acre feet of water annually, prepare and adopt, in accordance with prescribed requirements, a Water Shortage Contingency Plan (WSCP); and

WHEREAS, San Bernardino Municipal Water Department meets the definition of an urban water supplier for purposes of the UWMP Act; and

WHEREAS, the UWMP Act specifies the requirements and procedures for adopting such WSCPs; and

WHEREAS, pursuant to recent amendments to the UWMP Act, urban water suppliers are required to adopt and electronically submit their WSCPs to the California Department of Water Resources by July 1, 2021; and

WHEREAS, the San Bernardino Municipal Water Department has prepared a WSCP in accordance with the UWMP Act and SB X7-7, and in accordance with applicable legal requirements, has undertaken certain coordination, notice, public involvement, public comment, and other procedures in relation to its WSCP; and

WHEREAS, the WSCP references and incorporates the provisions of the San Bernardino Municipal Water Department’s Rule and Regulation No. 21, General Water Service/Water Rates, Section I Water Shortage Supply Rates adopted on September 20, 2016; and

WHEREAS, in accordance with the UWMP Act, the San Bernardino Municipal Water Department has prepared its WSCP with its own staff, with the assistance of consulting professionals, and in cooperation with other governmental agencies, and has utilized and relied upon industry standards and the expertise of industry professionals in preparing its WSCP, and has also utilized the California Department of Water Resources Guidebook for Urban Water Suppliers to Prepare 2020 Urban Water Management Plans, in preparing its WSCP; and

WHEREAS, in accordance with applicable law, including Water Code sections 10608.26 and 10642, and Government Code section 6066, a Notice of a Public Hearing regarding the San Bernardino Municipal Water Department’s WSCP was published within the jurisdiction of the San Bernardino Municipal Water Department on June 3, 2021 and June 10, 2021; and